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Abstract.  Digital aerial imagery (DAI) of the crop canopy collected by aircraft and unmanned aerial 
vehicles is the yardstick of precision agriculture.  However, the quantitative use of this imagery is 
often limited by its variable characteristics, low quality, and lack of radiometric calibration.  To 
increase the quality and utility of using DAI in crop management, it is important to evaluate and 
address these limitations of DAI.  Even though there have been improvements in spatial resolution 
and ease of imagery access, current DAI sources appear to lack the end-user demand for products 
that provide more than just an aesthetic image of a place-specific snapshot at a given time.  The 
objective of this study was to establish a site to test quality and different methods for radiometric 
calibration of DAI over time.  A 120-ha study area located in Story County, Iowa was used during the 
2015 growing season.  Commercial calibration tarps with known reflectance (3, 6, 12, 22, 44, and 
56%) values were deployed in a study area with two fields of corn (Zea mays L.) and two fields of 
soybean (Glycine max L.).  Two commercial DAI providers collected 0.2 meter and 0.5 meter, multi-
spectral (blue, green, red, and NIR) digital imagery every 10 to 12 days throughout the growing 
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season.  Empirical line method and segmental linear regression calibration techniques were utilized 
to convert digital numbers (DNs) to percent reflectance, which were used to create standardized 
NDVIs that could be compared across time (date to date) and across space (field to field).  Image 
processing challenges resulted from a highly non-linear mathematical relationship between DN 
values and percent reflectance, and from significant inaccuracies in the spatial registration of pixels 
from flight to flight.  Even so, calibrated temporal vegetation indices were produced allowing for 
identification of agronomic areas that had similar vegetative health over time.  The analyses showed 
that it is critical for DAI providers to maintain the purest form of the original digital values (with 
minimal post-processing manipulation) to allow for radiometric calibration of the data for use in 
spatiotemporal vegetation indices, crop modeling, and any other standardized image comparisons for 
use in crop management. 
 
Keywords. Remote sensing, digital aerial imagery, radiometric calibration, vegetation indices, NDVI, 
and crop management. 
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INTRODUCTION 
  
The applications of remote sensing in agriculture is well documented, from the identification of stem 
rust in wheat (Keegan et al., 1956) and the assessment of corn leaf blight by Bower et al. (1971) to 
crop identification and crop yield forecasting (Anuta and MacDonald, 1971; Gardner et al., 1985).  
Yet, even with these early successes in the application of remote sensing to agriculture, the last 
twenty-five years has seen limited acceptance by the agricultural community to wholly embrace the 
technology.  Pearson et al. (1994) identified three potential impediments to the widespread 
acceptance of remote sensing applications in agriculture during these early years.  These 
impediments were: 1) the ability to collect and deliver remotely sensed data with a high frequency, 2) 
the ability to rapidly disseminate the processed data, and 3) the ability to calibrate the data so that it 
could be compared from field to field (across space) and from one date to the next (across time).   
 
In the last twenty years, technological advances in imaging systems and web-based delivery systems 
have all but wiped two of these impediments from our collective memories.  The ability to collect 
digital aerial imagery (DAI) (from both aircraft and drones) on a weekly basis, or even a daily basis, is 
now almost commonplace.  And, the ability of DAI providers to disseminate the collected data to the 
end-user within hours of acquisition is considered the norm in the industry.  Yet it is the third 
impediment that still seems to be plaguing the industry—image calibration that allows spatial and 
temporal comparisons of remotely sensed imagery.  This calibration process is especially important 
as the agricultural industry moves toward a more prolific use and understanding of vegetation indices 
(Hatfield et al., 2008), such as the NDVI (Deering, 1978; Tucker, 1979) and its various modifications 
(Huete, 1988; Qi et al., 1994).  In order to make these indices truly meaningful, data must be 
converted from raw digital numbers (DNs) to percent reflectance. 
  
While methods of calibrating aerial imagery were published over two decades ago (Richardson et al., 
1991; Pearson et al., 1994) the industry has been slow to move toward the acceptance of any 
calibration process, and, in many cases seems to be ignoring it all together.  With that said, the 
research in this study takes a new look at the calibration process (and the resulting vegetation 
indices) of DAI through the use of ground-based commercial calibration tarps.  
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RADIOMETRIC CALIBRATION REVIEW 
 
When one reviews the current literature associated with remote sensing and DAI as a practical 
application in agriculture, three themes immediately emerge: 1) the use of vegetation indices, 2) the 
use of imagery products for crop management, and 3) utilization of radiometric calibration techniques 
for remotely sensed data.  These three themes are essential to the processes that enable DAI to aid 
end-users in developing methods to monitor crop health and crops stress.  However, it must be noted 
that the first theme (and to a large degree the second theme) is heavily reliant on the third theme: 
that of radiometric calibration.  Therefore, it is this theme (radiometric calibration of imagery) on 
which this study will focus.  A review of the literature yielded two types of radiometric calibration 
techniques, which attempt to account for illumination and atmospheric effects (Smith and Milton, 
1999).  The first was normalization or image averaging and the second was the empirical relationship 
between radiance and reflectance.   

Normalization 
 

Normalization of data is often nothing more that manipulation of a digital image so that all data uses 
the same scale or data range.  This normalization process can be achieved in a variety of ways 
including the use of data stretching techniques and the use of the soil line.  While not truly calibrated, 
data (when normalized) can often be compared spatially and temporally.  A good example of this 
normalization process was implemented in a recent study by Kyveryga et al. (2012).  The 
researchers in this study employed a normalization process by using uncalibrated DAI, but 
implemented normalization by extending the dynamic range of DAI so that 80% of the pixel values 
were within ±2 standard deviations of the mean DN.  The normalization method used in that study 
provided adequate results at a feasible cost (because of extensive size of the study area), as 
opposed to costly ground-based techniques that often require some sort of ground control. 

Empirical Line Method of Calibration 
 

The empirical line method for calibrating DAI is defined as the linear relationship that exists between 
the DNs and corresponding ground targets that have a known percent reflectance within the field of 
view (FOV) of an image, thus eliminating any sensor or atmospheric influence (Smith and Milton, 
1999).  Several studies have used the empirical line method with varying mathematical techniques 
being employed to obtain the calibrated relationship between DN values and reflectance (Pearson et 
al., 1994; Speckman et al., 2000; Shanahan et al., 2001; Fitzgerald et al., 2003; Markelin et al., 2008; 
Zhang et al., 2009; Clemens, 2012).  Moreover, by gathering percent reflectance values from known 
targets (with the understanding that an adequate number of targets and an adequate range of 
reflectance values are used), radiometric calibration can be accurate with an error of only a percent 
or two, which can produce reliable and acceptable results (Smith and Milton, 1999).  Following this 
notion, many of the studies previously mentioned implemented the empirical line method with small 
variations on the underlying concept.  One study employed the use of a spectroradiometer to gather 
percent reflectance from static ground targets for calibration (Zhang et al., 2009).  Several other 
studies used placards constructed as Richardson et al. (1991) described (Pearson et al., 1994; 
Speckman et al., 2000) or a form of a white reflectance panel (Clemens, 2012).  However, the 
majority of the more recent studies have employed various numbers of tarps with known percent 
reflectance for the conversion of DNs to percent reflectance. (Shanahan et al., 2001; Fitzgerald et al., 
2003; Markelin et al., 2008). 

STUDY OBJECTIVES 
 
While there is a great deal of literature on the various vegetation indices and the uses of imagery 
products for crop management, it is important to realize that the first step in truly understanding the 
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value of remote sensing in agriculture is to understand the significance and utility of calibrated versus 
uncalibrated imagery.  It was also evident when reviewing the literature that much of the intricacies of 
calibration techniques (from the various studies) were generalized without much detail provided to 
outline the specifics used for the methodology.  With this being stated, the emphasis of this 
preliminary research with Iowa Soybean Association (ISA) was to focus on a comprehensive 
investigation of radiometric calibration techniques using percent reflectance tarps with 
implementation of the empirical line method (and regression analysis) to develop a model for 
generating temporally comparable NDVIs.  This research was conducted using two independent 
image providers that collected imagery across the growing season on a 10 to 12-day cycle (weather 
permitting).  The ultimate goal of this study was to determine and report on the complexities involved 
in, and the issues surrounding the generation of, the development of radiometrically calibrated data 
for use in various vegetation indices.  

STUDY SITE, MATERIALS, AND DATA PROVIDERS 

Farm Field in Story County, Iowa 
 
The remote sensing study site used in this research was a corn (Zea mays L.) -soybean (Glycine 
max L.) rotational farm field in Story County, Iowa (Figure 1).  This site also contained areas of 
perennial vegetation, roads, and buildings.  The study area was approximately 120-ha in size and 
consisted of multiple fields of corn and soybean, various soil types, and rolling elevations ranging 
from 290-315 meters above sea level. 
 

 
 
Figure 1.  Layout reference of remote sensing study site, outlined in red.  Data was also provided for 
the two fields not outlined in red. 

Tarp Materials 
 
The tarps deployed throughout the growing season of 2015 were purchased from Group VIII 
Technology (G8T) (Provo, UT) (Figure 2).  The first set of tarps purchased were 6, 12, 22, and 44% 
reflectance and the second set purchased were 3 and 56% reflectance.  Manuals with charts of the 
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percent reflectance and the raw data from these readings were provided for all six tarps (Figure 3). 
These tarps were all 3x3 meters in size and were the Type-822 fabric of moderate weight woven 
polyester substrate (G8T, 2015a; 2015b).  All G8T tarps displayed a Lambertian quality and 
contained small-blackened brass eyelets that could be overlapped during deployment to create a 
gray scale display by staking them to the ground in an open area (2015a; 2015b).  
 

  
 
Figure 2 (left).  All six tarps in gray scale array deployed before an August 27th, 2015 flight.  From 
background to foreground: 3, 6, 12, 22, 44, and 56% reflectance (Photo by Dr. Randy Pearson).  Figure 3 
(right).  Spectral curve for 3, 6, 12, 22, 44, and 56% reflectance tarps with band averages.  Figure 3 was 
generated with raw data provided by G8T (2015a; 2015b). 

DAI Providers 
 

There were two digital aerial imagery providers (DAI-P) for the 2015 growing season.  The names of 
the image providers are being withheld from this study and will be referred to as DAI-P1 and DAI-P2.  
First, DAI-P1 provided data throughout the growing season from May to September.  DAI-P1 
delivered a single file that was a 4-band image (blue, green, red, and NIR) that was rescaled from 
12-bit data to 8-bit.  The data provided were also a mosaicked and georeferenced image that 
covered the entire study area.  Images were collected at a variety of times of the day throughout the 
growing season, ranging from early morning to mid-day.  The system characteristics and product 
delivery specifications for DAI-P1 system were as follows: 1) bandwidths for blue (410-490nm), green 
(510-590nm), red (610-690nm), and NIR (800-900nm), 2) a spatial accuracy of ±3 meters, 3) images 
would be cloud and cloud-shadow free, and 4) the spatial resolution was set at 0.5 meters. 

  
The DAI-P2 acquired data from June through September of the 2015 growing season.  DAI-P2 
delivered their data as two different files types.  The first was a 3-band color image (blue, green, and 
red) that was collected at 16-bit and rescaled to 8-bit.  The data were mosaicked and georeferenced 
to cover the entire study area.  The second file contained a 3-band color infrared image (green, red, 
and NIR) that maintained the numeric integrity of the original imagery that was collected at 16-bit.  
These images were not mosaicked or georeferenced to any coordinate system.  Like DAI-P1, data 
was collected at a variety of times of the day throughout the growing season, ranging from early 
morning to mid-day.  The spatial resolution for all imagery from DAI-P2 was set at 0.2 meters. 
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Both DAI providers collected imagery throughout the growing season on the average of every 10 to 
12 days.  The goal for image capture was to have both providers collect imagery on the same day, or 
within a couple days of each other.  Table 1 gives a breakdown of the DAI acquisition dates (and 
generalized time of day) along with available percent reflectance tarps. 
 
Table 1.   A general breakdown of dates and time of DAI capture from each provider with tarps 
present. 

DAI-P1 DAI-P2 
Date Captured Tarps Present Date Captured Tarps Present 

May 21, mid-day None   
June 9, mid-day None June 13, mid-day 6/12/22/44% 
June 16, early morning 6/12/22/44% June 17, late morning 6/12/22/44% 
June 30, mid-day 6/12/22/44%   
July 12, late morning 6/12/22/44% July 15, late morning 6/12/22/44% 
July 31, mid-day 6/12/22/44% July 30, mid-day 6/12/22/44% 
August 15, early morning 6/12/22/44% August 16, late morning 6/12/22/44% 
September 1, mid-day 3/6/12/22/44/56% August 27, late morning 3/6/12/22/44/56% 
September 3, mid-day 3/6/12/22/44/56%   
September 12, late morning 3/6/12/22/44/56% September 16, early morning 3/6/12/22/44/56% 

CALIBRATION PROCESS 
 
The calibration process utilized a variety of tools and techniques to convert each image band from 
DN values to percent reflectance.  These processes included the collection or extraction of DN 
values from each tarp of each band for all images, the computation of mathematical models to 
convert DNs to percent reflectance for each band, and the processing of the full images through 
these mathematical models to generate calibrated imagery in support of NDVI generation.  

Collection of DNs 
 
The calibration process began with collecting DNs from the various reflectance tarp pixels located 
within each image.  The tarp’s DN values were collected using a 3x3-pixel matrix around the tarp’s 
centroid.  From the 3x3-pixel matrix, a DN value was selected from each reflectance tarp in each 
band of every image.  For this study, the red and NIR DN values (and their corresponding percent 
reflectance) were arranged in a scatter plot to test for linearity.  The DN collection process was 
accomplished by using ERDAS Imagine 2015™ (Hexagon Geospatial, Norcross, GA) and the scatter 
plots and best-fit regression lines were generated using Microsoft Office Excel 2015™ (Microsoft, 
Redmond, WA).  It is important to mention that a low-end percent reflectance was calculated at 2% 
with the associated DN values located in shadowy dark areas (Moran et al., 2003; Beisl, 2012).  This 
was necessary to increase the range of known percent reflectance anchors in the visible bands. 

Computation of Mathematical Calibration Models 
 
The computation of mathematical models to convert DNs to percent reflectance were calculated in 
Microsoft Excel™ through the use of a scatter plot and the addition of a best-fit trendline.  Figure 4 
shows the scatter plots and best-fit trendlines (red DNs plotted against corresponding percent 
reflectance) for both DAI providers for the June 16/17th images.  Note that the relationship between 
DNs and percent reflectance for DAI-P1’s red band was extremely non-linear and behaved in an 
exponential manner.  For the red band, the 44% tarp was not used in the best-fit trendline because 
its corresponding DN had saturated at 255.  This non-linear relationship was consistent for all images 
collected by DAI-P1.  Conversely, the relationship between DNs and percent reflectance for DAI-P2’s 
red band was highly linear with the trendline tracking through virtually every point (with R² > 0.992 for 
all images).   
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Figure 4.  DAI-P1 (left) red band with non-linear exponential pattern.  DAI-P2 (right) red band with linear 
relationship. 
 
The relationship between DN’s and percent reflectance for DAI-P1’s NIR band was also extremely 
non-linear, but exhibited more of a logarithmic pattern (Figure 5).  As with the red band, DAI-P2’s NIR 
band exhibited this relationship for all images.  However, the relationship between the NIR DNs and 
percent reflectance was (once again) highly linear for all DAI-P2 images with all R² values exceeding 
0.987. 
 

   
 
Figure 5.  DAI-P1 (left) NIR band with non-linear near-logarithmic pattern.  DAI-P2 (right) NIR band with 
linear relationship. 
 
While the non-linearity of DAI-P2’s red band and NIR band appeared exponential and logarithmic, 
respectively, the strength of these relationships was less than optimal for this project.  Therefore, 
segmental linear regression was utilized as the best possible method for interpolation and 
extrapolation of predicted data values between and outside the range of known values.  Segmental 
regression simply calculates a linear equation between increasing pairs of points (i.e., 2 to 6%, 6 to 
12%, 12 to 22%, and so on).  By utilizing the known percent reflectance values as breakpoints, linear 
regression was used between breakpoints to generate prediction equations (Figures 6).  This method 
was outlined and used by Oosterbaan et al. (1990). 
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Figure 6.  Examples of segmental linear regression fit to the breakpoints of DAI-P1 red (left) and NIR 
(right) bands. 
 
When investigating the histograms of the DAI-P1 data it became apparent that the 6% tarp in the red 
band and the 44% tarp in the NIR band were not sufficient to provide the range needed to bracket 
the data distribution in the DAI and subsequently predict percent reflectance values.  The histogram 
of the red data (Figure 7), along with an overlay of percent reflectance values, indicated that 94.1% 
of the digital data for the red band had no “tarp control” below 6% reflectance.  This is especially 
important for vegetation analysis, since the red band’s percent reflectance (at full canopy) was 
typically down in the 3 to 4% range.  As well, the NIR band was limited on the high end with the 44% 
tarp (Figure 7).  On July 31st, the crops in this study had 82.5% of the data with a NIR reflectance 
above 44%.  Once this was noticed, two additional tarps were immediately purchased; a 3% tarp and 
a 56% tarp.  This was not necessarily an issue in DAI-P2’s data, since it was highly linear.  However, 
there were potentially serious implications for DAI-P1’s data because of its non-linearity. 

 

   
 
Figure 7.  Examples of DN histograms for red (left) and NIR (right) data from DAI-P1.  Plotted along with 
the histograms are the associated known percent reflectance values in relation to their positions along 
the histograms. 
 
As mentioned earlier in this paper, the only DAI provider that delivered a fully mosaicked and 
georeferenced data set throughout the season was DAI-P1.  Therefore, it was this dataset that was 
chosen as the base imagery to test and implement the calibration process for this study.  However, 
this data set was more difficult to calibrate because of its non-linearity.  In light of the fact that this 
study began without the proper range of reflectance tarps to address highly non-linear data, a 
workaround was developed to provide low red reflectance “pseudo calibration” targets and high NIR 
reflectance “pseudo calibration” targets.  This was accomplished by georeferencing and overlaying 



Proceedings of the 13th International Conference on Precision Agriculture 
July 31 – August 3, 2016, St. Louis, Missouri, USA Page 9 

the DAI-P2’s calibrated color infrared 16-bit image panels (nearest neighbor resampling) with the 
DAI-P1 geocorrected imagery (green, red, and NIR bands).  Once overlaid, DN’s from small 
polygons of DAI-P1 imagery could be related to the percent reflectance values of the same areas 
located within DAI-P2’s calibrated imagery (flown on a similar date).  This process allowed for the 
identification of numerous non-tarp calibration areas that could be used to refine the non-linear 
calibration equations for DAI-P1’s data. 
 
The graphs in Figure 8 show the linearity of DAI-P2’s data with all six calibration tarps and the 2% 
shadow point.  This linearity was exhibited in the last two flight acquired by DAI-P2 in which all six 
tarps were deployed.  As well, the graphs in Figure 9 emphasizes the need for the additional 3% and 
56% calibration tarps (and “pseudo calibration targets”) to generate the most reliable calibration 
equations possible to address the non-linearity of DAI-P1’s data.  Additionally, an assessment of the 
“pseudo calibration targets” was conducted on multiple images across the season to determine the 
validity of the process.  It was found that once DAI-P2’s images were converted into percent 
reflectance using a simple linear model, small isolated areas from within the agricultural fields (of the 
calibrated images) could be used as surrogate targets for generating reliable calibration points for 
DAI-P1’s images. 
 

   
 
Figure 8.  DAI-P2 red (left) and NIR (right) bands with linear data. 
 

   
 
Figure 9.  DAI-P1 red (left) and NIR (right) non-linear bands with segmental regression. 

Calibration of Imagery and Computation of NDVIs 
 
The actual conversion of the raw DNs from each image into percent reflectance utilized ERDAS 
Imagine’s™ Spatial Modeler.  This module of ERDAS™ enables the input of raw DNs from various 
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bands, the conversion of these bands into percent reflectance using the segmental regression 
equations, and finally, the computation of various vegetation indices as the final output.  This entire 
process was developed into an actual model that allowed efficient picking of calibration points, the 
plotting of these DNs against percent reflectance values, the visual assessment of the scatter plot 
and the resulting segmental equations, the conversion of the DNs into percent reflectance, and finally 
the production of the calibrated NDVI.  

COMPARRISON OF NDVI TEMPORAL SEQUENCES USING CALIBRATED 
AND UNCALIBRATED DATA 
 
Once the calibrated NDVIs were computed they were stacked into a multi-layer file for temporal 
comparison.  Figure 10 shows the location of 2 corn locations and 4 soybean locations in which the 
NDVI values were plotted over time (Figure 11).  These plots used an Adjusted Relative Julian date 
starting on June 9th, 2015.  The curves in Figure 11 are plots of each point’s NDVI over time and are 
color coded to match the data points in Figure 10.  An analysis of Figure 11 reveals several items of 
interest that should be noted.   
 

1. There is a significant difference in the NDVI value of the four soybean plots on Day 1 of the 
chart (June 9th).  Soybean 2 and Soybean 3 had significantly higher NDVI values than did 
Soybean 1 and the Soybean area that exhibited Sudden Death Syndrome (SDS) later in the 
season.  

2. The two corn locations on Day 1 had significantly higher NDVI values that all soybean 
locations on the same date. 

3. On Day 8 there was a significant increase in the NDVI in both corn and soybean. 
4. On Day 20 (following a 4+ inch rainfall) the NDVI values for the sites with the least canopy 

closure (Soybean 1, Soybean 3, and Soybean SDS) had a significant lowering of their NDVI 
value.  The lack of canopy closure allowed the sensor system to see through the thin and 
open canopy resulting in a significant influence from the wet bare soil.  Soybean 2 on the 
eastern flank of the field and the two corn locations had enough biomass and canopy closure 
to mitigate the effect of soil moisture on the NDVI. 

5. As is typical of NDVI (because of its use of the red band) there is a saturation or stagnation of 
the NDVI in the soybean fields around 0.88 to 0.92 (from Day 40 to around Day 70).  During 
this time, one can see only subtle differences between Soybean 1, Soybean 2, and Soybean 
3 points. 

6. At Day 50, one can begin to see a decrease in the NDVI of the soybeans with SDS and the 
two corn locations. 

7. Following Day 70, there is a significant divergence for all soybeans with Soybean 1 and 
Soybean 3 maintaining the highest overall NDVI.  Soybean 1 and Soybean 3 areas had the 
highest yields that were reported. 
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Figure 10.  Random sample points in specific crop locations for temporal comparison of calibrated and 
uncalibrated NDVIs. 
 

 
 
Figure 11.  Calibrated NDVI values over the 2015 growing season for crop specific locations. 
 
For comparison purposes, this study also produced an NDVI directly from the uncalibrated DNs.  The 
result of the temporal sequences from the field points is significantly different from the calibrated and 
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there is no real interpretation that can be made from these graphs (Figure 12).  In many ways this 
shows the meaninglessness of NDVI as a numeric value when the data are uncalibrated. 

 

 
 
Figure 12.  Uncalibrated NDVI values over the 2015 growing season for crop specific locations. 
 
Another way of utilizing the temporal sequence of calibrated NDVI images is to apply a standardized 
color ramp on each image.  Since the data are calibrated, the use of a standard color scheme across 
all images is useful for visual assessment of true change over time.  From the calibrated sequence of 
images in Figure 13, one can see how various portions of the field change color over time from deep 
red, through yellow, to light green, to dark green, and ultimately back through yellow to red.  This 
color sequence aids in seeing the effect of soil variation, grass waterways, poorly drained areas, 
soybean SDS, hybrid differences, residue differences, early and late senescence, and much more.  
When one compares the calibrated sequence of NDVIs to the uncalibrated sequence of NDVIs 
computed directly from DNs, there is a stark difference in their utility (Figure 14).  It is interesting to 
note that for each of the uncalibrated images there is always almost equal amounts of all colors 
regardless of the time of year.  For an early June image there is a great deal of deep green, which 
indicates healthy plants. In late July there is a great deal of yellow and red indicating very poor 
vegetation (even though both corn and soybean are at full canopy).  While the uncalibrated images 
provide an insight into maximum variation across the field at any point in time, it is difficult to 
understand and interpret the magnitude of these differences.  
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Figure 13.  Temporal comparison of all nine individual calibrated NDVIs from DAI-P1 with a 32-class 
color scheme that maintains the same values for all colors over time. 
 

 
 
Figure 14.  Temporal comparison of all nine individual uncalibrated NDVIs from DAI-P1 with the same 
32-class color scheme, but the colors are scaled with quantile breakpoints. 
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DISCUSSION AND CONCLUSION 
 
Throughout this preliminary research with ISA, many issues came to the forefront, but with novel 
approaches and sound practices, a realistic solution for radiometric calibration was attainable and 
produced results that were minimally variable.  The beginning of building a temporal crop-health 
database of the remotely sensed data from the study site in Story County, Iowa has begun with the 
data gathered from the 2015 growing season.  The process will continue with refinements of 
research in the future, through developmental goals that can focus on which vegetation indices to 
utilize and what forms of crop monitoring and management techniques that can be applied (Hatfield 
and Prueger, 2010).  Moreover, there are still many lessons learned from this growing season that 
can be built on to improve calibration techniques and the provisions of quality vegetation indices. 

 
The following will summarize the lessons learned from this study, with suggestions for further focus 
to develop research techniques.  First, with regard to the providers of DAI, non-linear data was 
problematic. Without percent reflectance tarps, which covered a large range of values, confidence in 
calibration of non-linear data diminished.  However, with linear data the use of only two or three tarps 
were needed to calibrate imagery with a high degree of confidence.  Second, the focus on tarp 
reflectance variability with relation to environmental conditions and deployment standards needs to 
be further investigated to gain even more confidence in results.  This could be accomplished by 
mounting the tarps to flatter and more solid surfaces, the use of calibration coefficients (Moran et al., 
2001), and/or through gaining spectroradiometer readings of the tarps at or near the time of flight.  
Third, the data providers must make available the camera specifications and the flight parameters for 
all dates of data acquisition.  Fourth, the issues of image to image misregistration (not elaborated on 
in this research) needs to be reengaged to understand if there is a better solution or these issues 
may be a more significant problem in future research.  Fifth, more effort should be focused on the 
utilization of linear data to extract a more precise DN for the 2% reflectance value as opposed to the 
method used in this study. If one can reliably identify the 2% DN values in an image, only one mid-
level reflectance tarp may be required to effectively calibrate the data (assuming the data is linear).  
Finally, this study has demonstrated that radiometric calibration is fundamental to the development of 
vegetation indices that have any true validity for quantitative comparisons across time and space.  
Since vegetation indices require the use of percent reflectance, the use of uncalibrated DNs to 
calculate NDVI or other vegetation indices will yield results that are not concurrent with the 
appropriate index values and will only represent the range of crop health relative to that specific time 
and location.  In other words, producing a vegetative index without calibration will only produce 
results that show a range of the best and worst vegetation in a given area at a given moment. 

  
With technology increasing in an exponential manner, the surging market of drone platforms, 
affordable high-quality sensors for digital image acquisition, processing software, and online 
applications, DAI is at the forefront of producing the data needed to aid end-users in agricultural 
practices to develop and implement plans that will benefit the environment, economy, and public 
health.  Between the data providers, analysts, and end-users, the onus is now on the entire industry 
and management system to find ways to better utilize the potential of these technologies.  Only time 
will tell where DAI applications and the potential of future crop management will be in the next 
decades.  Nonetheless, the beginning of the quantitative revolution in aerial imagery is now and will 
only continue to become better at serving a multitude of agricultural practices moving forward. 
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