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Abstract. The advent of Information Technology in agriculture, surveying and data collection became 
a simple task, starting the era of "Big Data" in agricultural production. Currently, a large volume of 
data and information associated with the plant, soil and climate are collected quick and easily. These 
factors influence productivity, operating costs, investments and environment impacts. However, a 
major challenge for this area is the transformation of data and information (collected in the field) in 
applicable knowledge. Within the context of Precision Agriculture (PA), which comprises a set of tools 
and technologies for georeferenced data collection to understand and manage inherent spatial 
variability within crop fields, the Brazilian sugarcane industry lacks results to assist farmers. The 
hypothesis of this work is that with the knowledge of the spatial variability of soil fertility and crop 
productivity, through the application of data mining techniques, it is possible to assist sugarcane 
producer in the correct management of the crop. Two areas cultivated with sugarcane, with 10 and 
30 ha, were monitored over the years 2012, 2013 and 2014. During this period, soil sampling was 
taking annually (117 and 107 points, respectively) and yield maps registered using a yield monitor. 
Using a computational environment created to support sugarcane agricultural research, data 
acquisition, formatting, verification, storage, and analysis of the principal component analysis (PCA) 
and decision trees for knowledge extraction were performed. The results show that a major factor for 
variation of sugarcane crops yield is related to texture, the amount of organic matter available and 
soil pH. Where there was an increase in the levels of organic matter from one year to another there 
was an increase in capacity cation exchange (CTC) and greater availability of Potassium and 
Phosphorus. Based on the knowledge rules by a decision trees analysis, it is possible to created 
specific management zones in the field that support the grower in a decision making. With the 
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expanded dataset, we expect to recognize relevant patterns that are reproduced consistently across 
distinct experiments, assisting producers in the correct crop management to improving the 
profitability of production.  
  
Keywords. data mining; precision agriculture dataset; decision trees, principal component analysis  

Introduction  
Precision Agriculture (PA) comprises some management practices to attempt increase productivity, 
profitability and improve environmental stewardship of rural areas. Essentially, the benefits are 
achieved by local treatment, considering the spatial variability. The main technologies available for 
PA users are yield monitors, remote and proximal sensing, Global Navigation Satellite Systems 
(GNSS) and Global Information Systems (GIS). However, these technologies are more advanced in 
cereals and grains, when compared to sugarcane industry (Silva et al, 2011). One of the factors for 
the weak advancement of precision agriculture (PA) in the Brazilian sugarcane industry is the lack of 
applicable knowledge to assist farmers in decision-making. The development proper decision-support 
systems for implementing precision decisions remains a major stumbling block to the PA adoption 
(McBratney et al, 2006). At the strategic and tactical level, assembled data on the performance of 
various farm management systems should be grouped by soil series to build a systematic database, 
allowing “quick and preliminary” evaluations of the effects of farm management strategies based on 
experiences obtained elsewhere on similar soils (Bouma et al, 1999). To overcome this challenge, 
agricultural information technology (AIT) has been broadly applied to every aspect of agriculture and 
has become the most effective means and tools for enhancing agricultural productivity and for 
making use of full agricultural resources (Yan-e, 2011). Within this context, the Precision Agriculture 
and Geoprocessing Team of Brazilian Bioethanol Science and Technology Laboratory (CTBE, 
Campinas, São Paulo, Brazil) has worked to contribute to the Precision Agriculture expansion in the 
sugarcane industry. The main objective of this paper was use a computational environment created 
to support sugarcane agricultural research, data acquisition, formatting, verification, storage, and 
data analysis (Driemeier et al, 2014) to assist sugarcane producers in the correct management by 
the extraction knowledge of the soil spatial variability and crop productivity through data mining 
techniques. From large volumes of data, obtained by different technologies, it is possible to extract 
relevant knowledge that can assist producers in production profitability, increasing the efficiency and 
sustainability of sugarcane industry.  

Material and Methods  
The data used in this study are from two experimental areas of precision agriculture projects in 
sugarcane fields. The first experimental area is located at Pedra Mill (PeM - 30 hectares - Sao Paulo 
- Brazil - 21°16'36.94"S 47°18'31.31''W - 583 m) and the second in Sao Joao Mill (SJM - 10 hectares 
- Sao Paulo - Brazil - 22°23'37.21"S 47°18'31.31''W - 640 m). The average slope of the areas is 10% 
and 2%, respectively, for the PeM and SJM. The sugarcane varieties in the experimental areas, 
chosen according to the weather conditions and local soil type, were CTC09 and SP80-3280 to PeM 
and SJM, respectively. The details in the management and initial objectives of the PeM and SJM 
experiments were reported in Magalhães et al. (2014) and Rodrigues et al. (2012), respectively. The 
main difference in the management used in the fields is related to soil fertilization. In PeM fertilizer 
were applied at variable rates yearly over the three cane cycles: Nitrogen (in accordance to the 
expected yield), phosphorus and potassium (in accordance to soil deficit determined by wet-chemical 
soil analysis), while in the SJM there received no fertilizer during the years of the experiment. The 
areas were sampled on a regular grid of 50x50 m and 30x30 m for PeM and SJM, respectively, with 
107 and 117 sampling points (Figure 1). All soil samples were submitted to laboratory tests to 
characterize the macro and micronutrients, pH, organic matter and clay, silt and sand content at 
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surface layer (0.00 to 0.20 m). For this study the soil attributes of greatest interest for sugarcane 
were analyzed: organic matter (OM), pH, phosphorus (P), Potassium (K), calcium (Ca), magnesium 
(Mg), hydrogen + aluminum (H + Al), sum of the bases (SEB), cation exchange capacity (CEC) and 
base saturation (BS). The cycles of cane corresponding to the evaluated years were: cane plant, 1st 
and 2nd ratoon for PeM; and 2nd and 3rd ratoon for SJM. The harvest of the experimental areas was 
monitored by yield monitor (SIMPROCANA, Enalta, São Carlos, Brazil). The yield data were reduced 
to the soil sampling grid using a regression in the buffer zone (Figure 1 - Detail) using the algorithm 
presented by Driemeier et al. (2014). As a first step, attributes of soil chemical composition were 
converted to the logarithm of concentrations. The logarithm scale reduced the skewness from 
concentration distributions positive and was additionally justifiable from a physical-chemical 
perspective (Atkins and Paula, 2002). The second step was to remove outliers from the data sets, 
which could cause detrimental bias to correlations and covariance. Any entry deviating from the 
mean by more than three standard deviations (for a given attribute) was treated the outlier (Driemeier 
et al, 2014).   
  

Principal Component Analysis (PCA)  
Principal Component Analysis (PCA) was performed for the purpose of simplifying the description, a 
set of interrelated variables using the dimensionality reduction and interpretation of components. This 
analysis does not discriminate variables as dependent or independent, as in the regression analyzes, 
with all attributes treated as variables. Thus, this technique can be understood as a method of 
transformation of the original variables into new uncorrelated variables, where each principal 
component (PC) is a linear combination of the original variables. The amount of data explained by 
each component is given by the variance, and the PC sorted in descending order, where the main 
component containing more information is the first, and so on. Algebraically, the principal 
components are linear combinations of p random variables X1, X2, ..., Xp. Geometrically, these linear 
combinations represent the selection of a new coordinate system obtained by rotating the original 
system with X1, X2, ..., Xp as the coordinate axes. The new axis is the direction of maximum 
variability and provides a simple description of the covariance structure (Johnson and Wichern, 
2007). PCA was employed to reduce the dimensionality of the attribute space and observe the 
correlation structure between the different soil attributes evaluated and sugarcane yield. Prior to 
PCA, imputation of missing data was performed by the Expectation-Maximization algorithm 
associated with a multivariate normal model, as described in Johnson and Wichern (2007). At first 
time we used the PCA with the original data from the two areas in all evaluated cycles. At the second 
time we made data subtraction (Eq. 1) to obtain the variability of the attributes levels at the evaluated 
sample points over the years. The main objective of this analysis was to know the correlation 
structure between the soil attributes and yield, observing possible reasons of yield variation over the 
experimental fields. For Eq. 1, a positive value means an increase in the assessed attribute from one 
year to the next, while a negative value the opposite case. This analysis, by dimensionality reduction 
of the problem, allow the interpretation of the various parameters evaluated in a simpler and effective 
way, resulting in a robust application to identify the determining factors in the sugarcane yield.  

 𝐶(𝑁𝒙,𝒚) = 𝐶(𝑖𝒙+,𝒚1) − 𝐶(𝑖𝒙,𝒚)    (1)  

where: 𝐶(𝑁𝑥,𝑦) – new content attribute evaluated at coordinates (x,y) and 𝑖 – evaluation year.  

  

Decision Trees Analysis  
Decision Trees belong to the class of supervised algorithms where a dependent variable is explained 
to the cost of n independent variables, measured on any scale. The Decision Tree consists in a set of 
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rules that associate a set of conditions with a specific outcome. These rules can be also represented 
in an intuitive tree format, enabling the visualization of the relationships between the predictors and 
the output. One of the main features of a decision tree is its representation in the form of a 
hierarchical structure that translates an inverted tree that grows from the root to the leaves. This 
translates into a hierarchical data analysis representation of progression in order to perform a 
predictive or classification task. The principle in classification trees is "divide-to-achievement". Thus, 
at each level of a tree, a problem more complex of prediction/classification (in which there is greater 
heterogeneity of the target variable values) is decomposed into simpler sub problems. This fact is 
reflected in the descendants nodes, in which heterogeneity of the variable to predict (and explain) is 
attenuated and can make predictions with lower risks for each of nodes (Santos Rodrigues, 2005). It 
follows that an investigation level flow from "general" for the "specific" case, in that each new tree 
level descendant nodes is limited to the value of another explanatory attribute. Decision trees can be 
used for different purposes, according to the problem to be solved. For this study the decision tree 
was used to find the soil attributes (independent variables) that better explain the sugarcane yield 
variability (dependent variable). There are several algorithms used in decision trees. Here it was 
used the CHAID algorithm - Chi-square Automatic Interaction Detection (Kass, 1980). The method 
adopted by this algorithm is the recursive division of the observations set in subgroups. At each step, 
the algorithm determines a classification rule by selecting a variable, where a cutoff in the values of 
this variable is done to maximize the statistical difference of subgroups (in relation to the dependent 
variable). All soil attributes evaluated in this study were categorized, and the contents ranked from 
the lowest levels to the highest, according to Raij et al. (1997). The only exception was for the 
organic matter content, where we used the continuous values of this one. The yield (dependent 
variable) was classified into five levels: very high (≥110 Mg ha-1); high (90≤y <110 Mg ha-1); medium 
(70≤y <90 Mg ha-1); low (50≤y <70 Mg ha-1) and very low (<50 Mg ha-1). The tree CHAID decision 
was executed by STATISTICA 13® software (StatSoft, Dell Software, Oklahoma, USA).  

Results  
The experimental areas are differences in the mean levels of clay and sand content (Fig. 2), PeM 
area being more clay (≈458 g kg-1 of clay) than SJM (≈232 g kg-1 of clay). Silt is on average equal 
(≈90 g kg1) for both areas. The average levels of organic matter in the two experimental areas 
decreased over time (Fig. 3), the average levels exceeding 20 g dm-3 for the PeM area and less than 
12 g dm-3 for SJM area. Phosphorus content increased over the years for both areas, with the SJM 
area contains approximately three times more phosphorus content compared PeM. Considering a 
desired minimum level of 16 mg dm-3 P, only the SJM maintained their mean levels within this range. 
Potassium decreased over time for the PeM, while for SJM increased in the third ratoon. PeM was 
richer in potassium and maintained the level within the desired range (K = 1.6 mmolc dm-3). Calcium 
and magnesium levels were always higher than desired (according Raij et al, 1997) for both areas, 
although calcium concentrations decreased over time at PeM. The soil pH was, on average, always 
within the average range (5.1 <pH <5.5) for both areas, however the minimum values (data not show) 
to this element were as low as 4.4 (high acidity) for both areas. The cation exchange capacity 
increased at SJM, while decreased at PeM, following the trends of Ca and Mg elements. The BS 
remained, on average, more than 60% (desired level) in SJM and was lower at PeM. The average 
yield declined over the sugarcane cycles in both areas. The largest decrease rate from successive 
cycles occurred at PeM (94 to 60 Mg ha-1 from cane plant to 1st ratoon). The distribution of the raw 
yield data shows the absence of outliers in the samples for both areas (Fig 4), and the less data 
variability was registered in the second ratoon at PeM (CV = 8%). The highest yields were recorded 
for PeM (≈140 Mg ha-1 - Cane Plant), while the lowest for the SJM (≈37 Mg ha-1 - Third Ratoon). 
Through PCA of the soil attributes and yield, components one and two explained, together, 
approximately 67% of the total variability of the data. According to the PCA, it is possible to observe 
that yield was directly influenced by the levels of potassium, organic matter and H + Al contents in the 
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soil (Fig 5 - top - left). The main facts that demonstrate this came from PeM data (Fig 5 - top - right), 
with a clear distinction of SJM and PeM clusters. The Pearson correlation coefficient (data not show) 
between yield and OM, K and H + Al were significant at 5% probability for PeM (r = 0.60, 0.28 and 
0.33, respectively, for OM, K and H + Al). For SJM correlation coefficients were significant only for 
the OM and H + Al (r = 0.20 and 0.30, respectively). On the other hand, analyzing the attributes in 
terms of the difference between the evaluated years, it is possible to observe that yield is directly 
related to changes in the soil pH (Fig 5 - bottom - left). This correlation was best expressed by data 
from the PeM (r = 0.48). For SJM there were no attributes with significantly correlation with yield 
variation (Table 1). The SEB was directly related to variations in Ca and Mg content, especially Ca (r 
= 0.99 and 0.97, at PeM and SJM, respectively). It is also possible to observe that variations in OM 
caused variations in the P, K and CTC contents, as the orientation of the vectors in the PCA. The 
variation in the OM caused significant variation in the P and K contents for SJM (r = 0.29 and 0.22, 
respectively) and CTC for the PeM (r =  
0.34). The decision tree algorithm based on CHAID first divided data according to the experiment 
area, i.e. showed that the PeM and SJM sites are significantly different in terms of yield (dependent 
variable). From 520 yield data in the database for analysis by regression tree, most often, in 
categorical terms, it is for high yields (Fig 6). The global average for the two areas was 83.45 Mg ha-

1. The first division of the tree between the two areas assessed also shows that the highest frequency 
in the PeM and SJM data are for high yields, averaged over all evaluated cycles equal to 88.61 and 
76.36 Mg ha-1, respectively. After this first division, the organic matter attribute was the most 
significant in explaining yield for PeM, with divisive content equal to 23 g dm-3. Contents above this 
value showed a higher frequency of high yields (M = 99.59 Mg ha-1), while lower levels showed low 
yields (M = 69.81 Mg ha1). On the other hand, the attribute that influenced the yield for SJM was soil 
pH, where high acidity led to a greater frequency of low yield (M = 73.96 Mg ha-1) and low acidity led 
to high yields (M = 81.81 Mg ha-1). After the relevance of OM in the soil, pH was the determining 
factor in yield for PeM, while BS was decisive in SJM. In places where there were higher levels than 
23 g dm-3 of OM and where the acidity showed high, the high content of potassium (> 3.1 mmolc dm-3) 
was an important factor to produce high yields (M = 107.2 Mg ha-1). Through the most important 
factors in determining yield for the evaluated areas, established by rules created in the decision tree, 
it’s possible create management zones that allow to guide farmers in soil management and decision 
making in sugarcane (Fig. 7).  

  

Discussion  
With the total clay content in soils, it is clear the textural difference between the areas evaluated in 
this study. The average content of clay, sand and silt in both areas, can be classified into sandy-clay-
loam and sandy-loam (EMBRAPA, 1999), respectively, for PeM and SJM. The maximum levels of 
clay found in the soil show that PeM can be clayey in specific regions of the field, while SJM 
presented transition regions of sandy-loam to clay-sandy-loam texture. Common fact in the 
sugarcane fields, the present study also observed the decrease rate in average levels of organic 
matter content for both areas (Santos et al, 2008). The organic matter content in the soil also 
followed, as expected, the soil texture. The most clayey areas, such as PeM showed higher levels of 
organic matter, while SJM showed lower levels (< 12 g dm-3). The values are as expected according 
Raij et al (1997), where sandy soils have lower levels of OM (<15 g dm-3) and in the clayey soils the 
levels are between 16 and 30 g dm-3. The yield variability data in the sampling grid, formatted 
according to the algorithm developed in Driemeier et al. (2014), demonstrate the model robustness to 
removing the noise and possible discrepancies in sugarcane yield monitors, as reported by Maldaner 
et al (2015). Because of different management methods adopted in the initial objectives of the 
experiments, in the PeM (where there were fertilizations with P and K) the average K levels decrease 
over the cycles, while for phosphorus there was an increase in the average content. In SJM, where 
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no fertilization was done, opposite to expectations, there was an increase in K and P average 
contents. For SJM, one hypothesis of growth P and K contents in the soil can be observed by the 
principal component analysis. Through the PCA and the Pearson’s correlation coefficient, it is 
possible to note that there is an evidence of increase in these levels in places where there was an 
increase in organic matter content of soil, where the inverse rule is also true, i.e., the decrease in OM 
contents reduced the availability P and K contents (Figure 5 - below). This was also reported by 
Nogueirol et al (2014) showing the importance of organic matter in the availability of macro and 
micronutrients in the soil. With a higher OM levels in the soil, PeM showed a direct correlation 
between the organic matter and production (r = 0.60), showing also that where this attribute is found 
in higher concentrations in the soil it is possible to provide greater amounts of nutrients, reach higher 
yields. The greater availability of OM in PeM caused a direct relationship with the CEC levels, 
showing again to be an important element in soil fertility (Landell et al, 2003). This fact is evidenced 
by the PCA with the original elements contents in the soil (Figure 5). Moreover, as expected, the 
greater availability of Ca and Mg promotes an increase in Sum of the Bases (SEB) for both areas. 
This show the robustness of the data and analysis used, since the Sum of the Bases is closely 
related to these elements (SEB = K + Ca + Mg + Na), where the sodium content is irrelevant 
compared to the other elements concentration in the soil (Raij et al, 2001). Aiming to establish rules 
that could highlight the applicable knowledge through dataset used here, we applied decision trees 
technique based on the CHAID algorithm. While it will require large amounts of data to ensure 
statistical differences (Santos Rodrigues, 2005), the CHAID algorithm has the advantage of not 
allowing the occurrence of overfitting, i.e., the tree overgrowth to reach the smallest details in data 
variability, making this an efficient and practical algorithm in targeting or tree growth. By applying this 
algorithm, it is evident the initial distinction between the experimental sites according to the yield. 
This fact shows the relationship between soil type and yield potential (Raij, 2011), one of the most 
decisive factors in establishment of management zones. Clayey soils present greater production 
potential compared to sandy soils, as evidenced in this paper. For this fact, sugarcane is managed 
according to production environments (Prado, 2005), where the soil texture is one of the determining 
factors for classification this environments “zones”. PeM, more clayey, showed that the second most 
important factor in determining the productivity was the organic matter available in the soil, where the 
content of 23 g dm3 distinguished productive local sites. The locals with higher level of this element 
produced, approximately, 30 Mg ha-1 more sugarcane biomass. On the other hand, in the SJM 
(where no fertilizer input, soil pH (expressed in terms of acidity) was an important factor to 
differentiate higher yield zones (M ≈ 82 t ha-1) to the lower yield zones (M ≈ 74 Mg ha-1). This fact 
contributes to Malavolta (1979) that show that the availability of nutrients to the plants occurs when 
the pH is at in lower acidity conditions, with the ideal range for the sugarcane is between 5.5 and 6.0 
of pH (Raij et al., 1997). Thus, this work contributes towards to evidence that the pH must be handled 
properly in low productive potential sites. In PeM soil acidity was also divisor factor productivity after 
the organic matter content. In poorer locations of OM (<23 g dm-3) and the lower acidity regions, it is 
possible observe higher yield zones (M ≈ 81 mg ha-1). On the other hand, in regions of high OM 
contents (> 23 g dm-3), potassium is presented as an important factor in determining high yields (≈ 
30 Mg ha-1 sugarcane biomass difference between locations where there were high levels of 
potassium in the soil compared to lower levels). This fact also contributes to evidence the availability 
of this element in the soil is a decisive factor for biomass production. By the rules established with 
this database, we can classify the areas in precision management zones (Figure 7) that allow help 
producers to increase the production profitability, increasing the efficiency and sustainability of 
sugarcane industry.  

Conclusion  
This work shows the importance of data analysis tools focused on agriculture. The database 
construction is extremely important in helping the knowledge extraction for producers, allowing 
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greater production profitability. The organic matter content and soil pH are essential factors that must 
be managed properly to ensure higher yields and should be managed according to their spatial 
variability. With the expanded dataset, we expect to recognize relevant patterns that could be 
reproduced consistently across distinct experiments, assisting producers to perform the correct crop 
management and improve the production profitability. Our research team are working to expand the 
sugarcane Precision Agriculture database, adding data from different data acquisition technologies 
as well as data from other experiments (finished and ongoing).  
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Fig 1. Soil samples location at field experiments of Pedra Mill (PeM) and Sao Joao Mill (SJM). Detail of buffer zone to convert 

yield data into soil sample grid.  
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Fig 2. Clay, sand and silt content (g kg-1) of Pedra Mill (PeM) and Sao Joao Mill (SJM). 



 

  
  



 

Fig 3.  Natural logarithm (ln) of the soil attributes content at Pedra Mill (PeM – above) and Sao Joao Mill (SJM – bottom).   The numbers represent the mean content of soil 
attributes. Red columns represent the desirable content according Raij et. al 1997. [Units]: [OM] – [g dm-3]; [pH] – [at CaCl2]; [P] – [mg dm-3]; [K, Ca, Mg, H+Al, SEB and CEC] – 
[mmolc dm-3]; [BS] – [%]. 
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Fig 4. Variability plot of yield (Mg ha-1) for Pedra Mill (Plant, first and second ratoon) and Sao Joao Mill (second and third ratoon).  

  
Table 1.  Pearson Coefficient Correlation of soil attributes and yield by difference between years for PeM (below of the main 

diagonal) and SJM (above of the main diagonal)  
  OM  pH  P  K  Ca  Mg  H+Al  SEB  CEC  BS  Yield  
OM  -  0.00  0.29*  0.22*  -0.05  0.17  0.05  0.01  0.03  -0.01  0.11  
pH  0.14*  -  0.09  -0.02  0.16  0.32*  -0.55*  0.22*  0.05  0.43*  -0.03  
P  0.13  -0.03  -  0.06  0.27*  0.18*  0.00  0.27*  0.26*  0.21*  0.06  
K  0.02  -0.01  0.06  -  -0.13  0.16  0.07  -0.03  -0.01  -0.08  0.00  
Ca  0.33*  0.24*  -0.01  0.11  -  0.56*  -0.04  0.97*  0.94*  0.79*  0.01  
Mg  0.32*  0.04  0.07  0.15*  0.68*  -  -0.21*  0.74*  0.66*  0.68*  0.03  
H+Al  0.08  -0.35*  0.13  0.10  0.04  -0.14*  -  -0.08  0.22*  -0.55*  0.08  
SEB  0.34*  0.22*  0.01  0.19*  0.99*  0.78*  0.01  -  0.95*  0.84*  0.01  
CEC  0.34*  0.06  0.06  0.22*  0.91*  0.65*  0.42*  0.91*  -  0.65*  0.04  



 

BS  0.28*  0.42*  -0.05  0.16*  0.74*  0.71*  -0.53*  0.78*  0.49*  -  0.00  
Yield  0.04  0.48*  0.07  0.05  0.07  -0.16*  -0.01  0.04  0.04  0.09  -  

* Significant at 5%. 
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Fig 5. Principal Component Analysis (PCA) of soil and yield data for Pedra Mill (PeM – Blue) and Sao Joao Mill (SJM – Red). Original (above) and difference between years 
(below) for soil and yield data for all years evaluated. Projection of the variables (left) and cases (right) on the principal component-plane for the first and second principal 

components.  
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Fig 6. CHAID results decision tree for soil (independent variable) and yield (dependent variable) data for Pedra Mill (PeM) and Sao Joao Mill (SJM) for all years evaluated. Yield 

was divided into five classes – very high (≥110 Mg ha-1); high (90≤y<110 Mg ha-1); medium (70≤y<90 Mg ha-1); low (50≤y<70 Mg ha-1) and very low (<50 Mg ha-1). M – yield mean in 
the node (Mg ha-1); SD – Standard Deviation of yield in the node (Mg ha-1); N – Number of cases in the node.  
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Fig 7. Experimental areas Pedra Mill (PeM) and Sao Joao Mill (SJM) divided into management zones according to the first rule 

established by CHAID decision tree.  
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