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Abstract. The local management of crop areas, which is the basic concept of precision agriculture, is 

essential for increasing crop yield. In this context, diffuse reflectance spectroscopy (DRS) and digital 

elevation modelling (DEM) appears as an important technique for determining soil properties, on an 

adequate scale to agricultural management, enabling faster and less costly evaluations in soil 

studies. The objective of this work was to evaluate the use of DRS together with topographic 

parameters for quantification of soil physical and chemical properties and its relationship with the 

precision agriculture. For that, 34 soil samples were collected at 0-0.20 m depth, in an area of 100 

ha, belonging to the Santa Fé mill, in Tabatinga, State of São Paulo, Brazil. After the soil collection, 

the samples were dried in a forced-air oven at 45 °C for a period of 24 hours, sieved through a 2 mm 

mesh, and sent to a soil-testing laboratory. Soil spectra were measured using a commercially 

available spectrophotometer FieldSpec 4, (Analytical Spectral Devices, Inc., ASD, Boulder, Colorado, 

USA) in the range of 350 2500 nm (Vis - NIR -SWIR), with three replicates for each sample. The 

topographic data were obtained from the DEM. Then, using radiometric information, regression 
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models were generated by partial least squares (PLSR) to estimate the soil attributes. DRS shows a 

good correlation with copper, clay and H+Al (R² of 0.94, 0.93 and 0.65 and Relative Percent 

Deviation (RPD) of 4.80, 3.47 and 2.15, respectively) and with intermediate performance to predict 

Mn, sum of bases (SB), OM and base saturation (V%) (R² of 0.70, 0.65, 0.59 and 0.58, RPD of 1.65, 

1.59, 1.58, 1.46, respectively). The physical and chemical soil properties vary along the slope, this 

differentiation was detected via electromagnetic spectrum. It appears that the DRS can assist in 

determining soil properties and knowledge of the soil spatial variability, adding new information to 

management practices in precision agriculture. 

Keywords. soil spectroscopy, digital elevation model, directed sampling. 

 

Introduction  

 

The adoption of management practices in precision agriculture (PA) allows you to improve the 
management of agricultural areas, through information of spatial and temporal variability of crops in 
order to improve the production performance of the culture, the rational use of inputs and the 
reduction of environmental impacts (Corá et al., 2004; Molin et al., 2010). Among the PA tools, the 
use of georeferenced soil sampling and the application of inputs to the variable rate is one of the 
main practices used in Brazilian crops (Cherubin et al., 2015). 

However, to achieve the application of variable rate it is required adequate sampling of the soil 
physical and chemical attributes with high spatial resolution (Kerry e Oliver, 2007). Currently, 
conventional chemical analysis for characterization of soil attributes for high density sampling, they 
have proven costly and prohibitive. Most methods use large amounts of chemical reagents, which 
prolong the results of analyzes can promote impact on the environment (Souza Junior et al., 2011). 

Thus, the cost and work associated with the increased sampling density for the characterization of 
soil properties for PA purposes are factors that limit the ability to represent the spatial variability of 
soil properties found in the field, which can lead to inadequate decisions because the spatial 
prediction error in the maps with low sample density increases the spatial variability, since 
inadequate application rates of lime and fertilizers are made. 

Among the alternatives for the quantification of soil attributes for high density sampling, research has 
been directed to the use of techniques of diffuse reflectance spectroscopy (DRS). Most DRS studies 
in soils use measurements in the visible wavelengths (VIS), near infrared (NIR) and mid infrared 
(MIR) to predict the chemical and mineral composition of soils on field level and laboratory with 
appropriate scale to agricultural management, enabling faster and less costly evaluations in soil 
study (Fiorio et al, 2010; Cezar et al, 2013; Armenta and Guardia, 2014; Nocita et al, 2015). In this 
respect, Cozzolino and Moron (2003) and Dierke and Werban (2013) reported the use of 
spectrometer at the laboratory level for the estimation of various attributes such as soil texture, pH, 
organic carbon, potassium (K), calcium (Ca ), magnesium (Mg), iron (Fe) and copper (Cu). 

In addition, another technique that can be used to DRS to caracterize the spatial variability of the soil 
is the use of the digital elevation model (DEM), which determines aspects of the landscape. The 
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MDE constituted as an important tool through which relief attributes (elevation, slope and curvature) 
are derived and used to characterize the distribution of soil properties (Ziadat, 2005). 

Thus, the importance of studies such as Gessler et al. (1995), which developed different statistical 
models to establish quantitative relationships between landforms derived from the DEM and the 
distribution of soil properties, can be observed. This approach is useful to determine the spatial 
variability of soil properties on an adequate scale to farm management, by providing better 
representation of gradual and continuous changes of soil properties, supporting faster and less costly 
evaluations in soil study (Zhu et al ., 2001). 

However, it is necessary to establish an efficient and less costly method for the discrimination of 
physical and chemical characteristics of the soil in detail, to allow the use of PA to improve localized 
management of production areas. Thus, the objective of this work was to evaluate the use of DRS 
together with topographic parameters for quantification of soil physical and chemical properties and 
its relationship with the precision agriculture. 

 

Materials and Methods 
 

For this research it was necessary the acquisition of spectral and topographic information of the 
study area located at Usina Santa Fe, the city of Tabatinga, located in the central region of São 
Paulo, Brazil, for a total of 100 hectares. Thus, 34 sampling points for characterizing the spatial 
variability of the soil and relief (Figure 1) were demarcated. The geographical coordinates of the 
center point of the study area are located at 21 38 '12 "south latitude and 48 ° 39' 04" west longitude. 
The climate was classified as Aw (Koppen and Geiger, 1928), tropical rainy, cold and dry winter, with 
altitude ranging from 450 to 540 m. The soil use in the region is predominantly agricultural, 
highlighting the culture of sugarcane. 

The soil samples were collected at layer 0 - 0.20 m of soil depth (horizon A), with the help of auger 
and georeferenced with GPS Trimble Juno 3B receiver. After the soil collection, the samples were 
dried in a forced-air oven at 45 ° C for a period of 24 hours and sieved through a 2 mm mesh. Then 
the samples were submitted to carry out physical and chemical laboratory analysis.  

The granulometric composition of the soil was obtained by the method of the densitometer (Camargo 
et al., 196) and classified using the textural triangle according to EMBRAPA (2006) it was possible to 
distinguish two textural classes of soils: clayey (350-600 g kg-1 clay) and medium (150-350 g kg-1 
clay). The analyzes of organic matter (OM), P, Ca, Mg, Mn, K, Al, H + Al, CEC, V%, SB, Cu, Zn, m% 
Fe, pH, were carried out according to Raij et al. (2001). 

Soil spectra were obtained using a commercial spectrometer FieldSpec 4 (Analytical Spectral 
Devices, Inc., ASD, Boulder, Colorado, USA) with a spectral resolution of 1 nm at wavelengths of 
350-1100 nm and 2 nm in lengths that range 1100-2500 nm, with three replicates for each sample. 
For this, we used a measuring device called the MugLight manufacturer, which has its own light 
source. In order to determine the reflectance factor, we used the standard plate 100% reflectance. 
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Figure 1 – Location of study area 

 

Then, it was applied to the spectra pretreatments first and second derivatives Savitzky-Golay for 
offset correction and the spectra baseline slope for best regression models partial least squares 
(PLS) to predict the attributes soil, using Unscrambler software X® 10.2 (Camo AS, Oslo, Norway). 
The samples were randomly divided into a data set for calibration of the model (24 samples) and a 
group of data to the external validation (10 samples). The quality of the developed calibration was 
evaluated using the coefficient of determination (R2), the mean squared prediction error (RMSEP) 
and RPD (Relative Percent Desviation).  

According to Sayes et al. (2005), R2 values between 0.50 and 0.65 indicate the possibility of 
discrimination of high and low concentrations in the model, while R2 values from 0.66 to 0.80 
indicates acceptable models, from 0.81 to 0.90 indicate good models, and finally, values greater than 
0.9 indicate excellent model prediction capability. According to Dunn et al. (2002) and Chang et al. 
(2001) RPD values above 2.0 are considered excellent models, 1.4 to 2.0 acceptable models and 
less than 1.4 untrusted models. The use of R² and RPD figures of merit are the most important 
indicators for assessing the quality of the analysis by diffuse reflectance spectroscopy (Williams, 
2001). 

The DEM were obtained in two ways: DEM - SRTM, SRTM data (Shuttle Radar Topographic 
Mission) obtained by synthetic aperture radar interferometry in the USGS database (United States 
Geological Survey) in 1 format 'arcossegundo (~ 30 m) horizontal resolution, datum WGS84, over 
74,418 listed points obtained from the GPS receiver. The MDE - TOPODATA obtained from the 
refinement of the original SRTM data for Brazil (Valeriano and Rossetti, 2009) with spatial resolution 
of 30 m, over 74,418 listed points obtained from the GPS receiver. 

The DEM represents continuously terrain elevation values through a regular grid coordinates x, y and 
z values, elevation, (Demattê et al., 2014). To model processing, it was used the software ArcGis 
(ESRI, 2010), with function of Application top to Raster 3D Analyst module. From the MDE, the 
results are the slope maps, aspect and curvature. In addition, DEM were designed for UTM 
coordinates (Universal Transverse Mercator) Zone 22 South and the Reference Geodetic System - 
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Datum SIRGAS 2000. 

The soil sampling points were specialized in computing environment, obtained topographic point 
information of each index. Thus, there was Pearson correlation with the results of chemical and 
physical analysis laboratory and topographic attributes. 

Thus, the DEM - SRTM and DEM - TOPODATA were evaluated according to the ability to derive 
attributes of the land that best correlates with soil properties. 

 
Results and Discussion 
 

Soil analyzes from the surface layer (0-0.20 m) indicate high variability of the chemical and physical 
soil properties, due to heterogeneity of soil formation processes, as well as intensive agriculture with 
high input of lime and fertilizer the soil (Table 1). This explains the high levels coefficient of variation 
of phosphorus (P), aluminum saturation (m%), copper (Cu), aluminum (Al), respectively 103.70; 
109.29; 97.06 and 87.23%. Furthermore, there is a high concentration of copper on the surface layer 
of soil (5.5 mg kg-1). 

The soils of the featured region, characterized as being of medium texture to clayey (EMBRAPA, 
2006) have the greatest potential to retain copper accruing from the management practices of 
culture, in view of the higher organic matter (OM) and cation exchange capacity (CEC). 

The average base saturation is less than 50%, indicating that the study area soils are medium to low 
fertility. In addition, low values of aluminum saturation (m%) were observed in the surface soil layer. 
This can be explained considering that areas with high application correctives (limestone) tend to 
occur elevation V%, which displaces the Al3+ to the soil solution and then leached into subsurface 
layers of soil and hence reduces m% in the region of 0-0.20 m (Raij, 1969). 

 
Table 1 - Chemical and physical characteristics of soil samples used in this study. 

Variable Min. Max. Mean SD1 CV2 

Clay (g kg-1) 212.00 494.00 321.70 94.08 29.24 

OM3 (g kg-1) 10.00 25.00 16.70 4.88 29.22 

pH (CaCl2) 4.30 6.00 5.02 0.48 9.56 

P (mg kg-1) 4.00 52.00 10.00 10.37 103.70 

K (mmolc kg-1) 0.26 2.33 1.10 0.45 40.91 

Ca (mmolc kg-1) 4.62 32.45 13.84 7.23 52.24 

Mg (mmolc kg-1) 3.36 13.32 7.01 2.88 41.08 

Al (mmolc kg-1) 0.27 3.55 0.94 0.82 87.23 

H+Al (mmolc kg-1) 13.00 39.00 23.05 6.60 28.63 

SB4 (mmolc kg-1) 9.11 47.47 21.95 9.96 45.38 

CEC5 (mmolc kg-1) 32.59 68.47 45.01 9.81 21.80 

V6 (%) 22.60 69.33 47.62 14.56 30.58 

m7 (%) 0.75 28.04 5.49 6.00 109.29 

Cu (mg kg-1) 0.30 5.50 1.70 1.65 97.06 

Mn (mg kg-1) 1.10 15.10 4.87 3.23 66.32 

Fe (mg kg-1) 4.00 26.00 11.23 5.12 45.59 

Zn (mg kg-1) 0.20 0.50 0.32 0.06 18.75 

 1Standard deviation; 2Coefficient of variation; 3Organic matter; 4Sum of bases; 5Cation exchange capacity; 6Base saturation;   
7Aluminum saturation. 

According to Table 2, it can see some trends among the correlations. It was noted that the 
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relationship between the chemical, physical soil properties, and topographic attributes vary for each 
digital elevation model lineate. It has, for example, to the DEM - TOPODATA a curvature of 
correlation with OM, SB and CEC and V% higher than the same attributes as the MDE - SRTM. 

Moreover, in terms of absolute values, the DEM - TOPODATA showed generally higher correlations 
of topographic indexes with soil properties. According to Hofton et al. (2006), the SRTM data can 
present distortions in altimetry due to the soil use and land cover, especially dense vegetation and 
buildings, which often prevents the determination of elevation attributes, curvature, aspect and slope 
nearest values obtained in field . 

In terms of elevation attribute, there is a correlation with the clay of -0.409 and -0.363 for DEM-
TOPODATA and DEM-SRTM respectively. Demattê et al. (2014) developing a soil limits detection 
method through the interaction of spectral data and landforms from DEM prepared by contour lines 
with vertical equidistance of 20 m, observed correlation between the elevation and the clay content in 
six toposequence ranging from -0.187 to -0.989. Graham & Buol (1990) points out that this fact is 
associated with the variation of the source material and weathering action. 

Thus, there is a potential for the use of derivatives topographic attributes of digital elevation models 
for knowledge of the spatial variability of soil attributes. The DEM can be used as an external variable 
in the mapping of soils. 

 
Table 2 – Matrix of Pearson correlation between the chemical and physical attributes of the soil and topographic indices 

(elevation, curvature, aspect e slope) 

  MO SB CTC V% Clay 

DEM - TOPODATA 

Elevation -0.288 -0.116 -0.251 -0.039 -0.409 

Curvature -0.576 to -0.439 -0.556 -0.225 -0.444 

Aspect -0.184 -0.103 -0.253 0.047 -0.276 

Slope 0.227 0.309 0.386 0.074 0.068 

DEM - SRTM 

Elevation -0.261 -0.148 -0.244 -0.078 -0.363 

Curvature -0.027 0.099 0.169 -0.043 -0.007 

Aspect -0.038 0.232 0.089 0.267 -0.084 

Slope 0.117 0.143 0.196 0.014 0.061 

 
The DRS showed to be more efficient in the application on precision agriculture, especially the 
quantification of copper content, clay and H + Al (R² of 0.94, 0.93 and 0.65 and RPD 4.80; 3:47 and 
2:15, respectively) with intermediate performance for predicting Mn, SB, MO and V% (R² of 0.70, 
0.65, 0.59 and 0.58, RPD 1.65, 1.59, 1.58, 1.46, respectively) according to the classification (Dunn et 
al. 2002; Chang et al., 2001), Table 3. 

In the case of  clay content and copper (Cu), the best model fit is related to the greater amount of 
these attributes in the soil (Table 1), thereby providing greater interaction between electromagnetic 
energy and particles of clay, as well as interactions energy with the molecular bonds of copper. 

According to Sousa Junior et al. (2011), clay content has absorption features, characteristics in the 
regions of the visible and near infrared of the electromagnetic spectrum, so the higher the better clay 
fraction are the chances of success of quantification models. 

The poor prediction of attributes (Al, Fe, P, Zn, K, Ca, CEC, pH and Mg) performance of the models 
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makes it clear the heterogeneity of the area and the difficulty of building models with lower sampling 
density (24 calibration samples ) without prior knowledge of the spatial variability of soil attributes. 

Thus, best results were obtained when secondary information of plant and soil is used for targeted 
soil sampling for model calibration (Wetterlind et al., 2010). 

 

Table 3 - Statistical evaluation of estimation models applied to the calibration attributes samples (internal test) and model 
validation samples (external test) 

Variable Pretreatments Calibration Validation 

RMSE R² RMSE R² RPD PLS Factors 

Al SG1-1ª derivative 0.5482 0.6434 0.9316 0.0544 0.88 5 

Clay Absorbance 19.5579 0.9581 27.1386 0.926 3.47 5 

Ca Absorbance 3.692 0.7027 5.9851 0.2786 1.21 6 

CEC SG-1ª derivative 4.0383 0.8126 7.3177 0.435 1.34 4 

Cu SG-1ª derivative 0.1267 0.9911 0.345 0.9398 4.78 6 

Fe Absorbance 4.8904 0.2049 5.2328 0.1639 0.98 3 

P SG-1ª derivative 0.3308 0.9981 7.2129 0.1906 1.44 12 

H+Al Absorbance 1.8791 0.8577 3.0751 0.6501 2.15 7 

m% SG-1ª derivative 1.2397 0.9296 4.4133 0.181 1.36 7 

Mg SG-1ª derivative 0.3068 0.9899 2.3704 0.4497 1.21 9 

MO Absorbance 2.847 0.6162 3.0894 0.585 1.58 2 

Mn SG-1ª derivative 0.3815 0.9878 1.9607 0.7049 1.65 8 

pH  Absorbance 0.2546 0.7003 0.3698 0.4194 1.30 6 

K SG-1ª derivative 0.2729 0.6901 0.4424 0.2519 1.02 5 

SB Absorbance 4.3277 0.8198 6.2776 0.6519 1.59 5 

V% Absorbance 6.7653 0.7892 10.004 0.5767 1.46 6 

Zn SG-1ª derivative 0.045 0.5561 0.0619 0.228 0.97 3 

1Savitzky-Golay 

 
The study area has altitude ranging from 460 to 530 m (Figure 2A). The clay content vary along the 
slope (Figure 2B, 2D). This differentiation was detected by the electromagnetic spectrum two point 
soil samples collected at different locations in topossequence (Figure 2C). Such variations can assist 
in points demarcation programs for sampling and analysis of soil via spectroradiometry adding new 
information to the precision agriculture. 
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Figure 2 - Spatial distribution of variability of altitude in the study area (A); (B) Graphical representation of toposequence; (C) 
spectral curve and (B) clay content of two soil samples collected in regions of different altitudes. 

 

Conclusion or Summary 
 

The spectroradiometry diffuse reflectance was efficient in determining the contents of clay, copper 
(Cu) and aluminum more hydrogen (Al + H), indicating that the spectral response of these soils can 
be used to establish the levels of these attributes. 

The DEM-TOPODATA showed the highest correlations between topographic attributes and soil 
properties. The curvature and the elevation were the topographic indexes that best correlated with 
the chemical and physical soil properties in both digital elevation models. 

Thus the topographic attributes derived from digital elevation models can be used to characterize the 
spatial variability of soil properties in large scale, assisting in directing the sampling and soil analysis 
spectroradiometry adding new information to management practices in precision agriculture. 
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