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Abstract. One important tool within the technological precision agriculture (PA) package are the 
apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil 
physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this 
technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the 
applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-
making for crop management. The objective of this study was to map the ECa by three different 
sensors, commercially available, to assess their relations with soil properties in order to help farmers 
in selecting the proper device for soil characterization. Soil ECa data was collected in a sugarcane 
field (100 ha) with three sensors, two based on resistivity principle (ARP® and Veris 3100®) and other 
based in electromagnetic induction (EM38-MK2®). Thirty-four soil samples were collected (≈1 sample 
each 3.0 ha) at two depths. This approach sough to determine the correlation between sensors and 
soil properties in strategic places of the field, aiming to determine which sensor brings more reliable 
information about soil fertility. Results show the ECa present significant correlations with many soil 
properties, where the electromagnetic induction (EMI) sensor presented the highest correlation with 
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clay content (r = 0.83), Organic Matter (r = 0.73), Cu (r = 0.87) and Mn (r = 0.77). The variables that 
represent main soil properties by principal component analysis (PCA) showed that the EMI sensor 
showed the greatest potential for physicochemical characterization of soil spatial variability. One 
reason for the difference between correlations can be explained by the sensors sensibility depth, but 
further investigations should be carry on seeking to explain with more details the difference among 
the information provided by the sensors. Through ECa using of commercial available sensors, it is 
possible to assess soil spatial variability, making it a powerful tool for farmers in a decision-making. 
 
Keywords. ECa sensors; soil fertility, reliable fertilizer maps, principal component analysis 

Introduction 
Brazil is the largest sugarcane producer, harvesting 9 million hectares and milling 658.7 million tons 
in 2015. However, the country yield needs to improve (≈73 Mg ha-1 - Conab, 2015) to achieve the 
yield average obtained in the best production units (≈ 107 Mg ha-1 without irrigation). The biggest 
limitations of sugarcane yield in Brazil are related to water deficit, to inadequate crop management 
and the availability of nutrients for plants. One approach that may assist to achieve high crop yield 
ensuring better sustainability in the production process is the technology package of Precision 
Agriculture (PA). Within this context, reliable soil properties maps continue to be a goal for allow 
adequate and accurate soil fertility management (Peets et al., 2012). This management must be 
done by a precise characterization of the soil spatial variability to allow proper variable-rate fertilizers 
application, which is crucial for high yields and hence a more profitable and sustainable production. 
Within the historical context of affordable technologies to acquire quality information to manage crop 
spatial variability, the apparent electrical conductivity (ECa) of soil has been highlighted as an 
effective method to evaluate quickly, with high resolution and low cost the general soil fertility 
conditions (Sudduth et al., 2005). Intrinsically related to moisture content, many researches shows 
that ECa is able to detect soil properties changes, such as salinity, clay content, cation exchange 
capacity, size and distribution of pores, organic matter and temperature (Kaffka et al., 2005; Kitchen 
et al., 2003; Corwin and Lesch, 2005). It is evident that the ECa is an effective information that is 
able to show physicochemical soil matrix, often neglected by the lack of applicability of this 
information. One of the first decisions which growers have to make is which is the most appropriate 
tool. The objective of this study was to assess three ECa sensors, commercially available, and 
evaluate their relationship with physicochemical soil properties, identifying the potential of them to 
map soil fertility spatial variability.  

Material and Methods 
The study was performed in a commercial sugarcane field (100 hectares) located at Santa Fe Mill 
(Nova Europa, São Paulo, Brazil – 21°38’16.06’’S, 48°39’00.87’’W). Apparent electrical conductivity 
(ECa) was measured by three commercially sensors (Figure 1). Two sensors work with resistivity 
principle, ARP® (Geocarta, France, Paris) and Veris 3100® (Veris technologies, Kansas, United 
States); the other works with electromagnetic induction principle, EM38-MK2® (Geonics, Toronto, 
Canada). The sensors are configured (default setting) for different depths of measurement. The 
ARP® was configured to measure at the depths 0.00 to 0.50 m, 0.00 to 1.00 m and 0.00 to 1.50 m; 
Veris 3100® at 0.00 to 0.30 m and 0.00 to 0.90 m and EM38-MK2® was configured to measure at 
0.00 to 0.38 m and 0.00 to 0.75 m. For this study, we used only the first depth readings because the 
soil sampling was done within these depths. Measurements with sensors were made in parallel 
passes spaced by 10 m. All data were analyzed statistically with central tendency and dispersion, 
and a box-plot was constructed for outlier’s identification. The Moran Index (MI) was calculated to 
assess the spatial autocorrelation in order to know the spatial structure of ECa readings. The limiting 
case, MI ≈ 1, shows a perfect spatial structure, while MI ≈ 0 shows a random spatial distribution. The 
sampling points were chosen based on the spatial distribution of ECa (Figure 2), taken at strategic 
places of the field, where the ECa presents differences within the mapped field and between the 
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sensors used. In total 34 points were selected, corresponding, approximately, to 1 sample for 3 
hectares (sample density usually adopted by the Mill). All soil samples were submitted to laboratory 
analysis to characterize the macro and micronutrients availability, pH, organic matter and clay 
content. The field elevation was also determined by a L1-band GNSS receiver (Figure 2 – detail). 
Soil ECa data were interpolated by ordinary kriging (Figure 2). ECa data were reduced to the sample 
point through the median of a 25 m radius buffer. The correlation between soil attributes and ECa 
was evaluated by Pearson’s correlation at 5% of significance. The correlation between sensors was 
assessed comparing with 424 points distributed in the field in a regular grid (50 x 50 meters), that 
where measured at the beginning of the study, where the value at each point was obtained by a 
buffer of points inside the 50m. Finally, the principal component analysis (PCA) was used to evaluate 
the correlation of the main components of soil attributes with ECa sensors. This analysis, by 
dimensionality problem reduction, allows interpreting the correlation of soil attributes with ECa in a 
simpler and effective way, resulting in a robust application to identify the potential of the sensors 
evaluated.  

Results 
Except for the clay content and aluminum in the top soil layer, the other soil properties decreased its 
concentration while depth grow, and the phosphorus content reduced by half (10 to 5 mg dm-3) 
(Table 1). The clay content of the area ranged from 212 to 494 g kg-1 in the surface layer and 261 to 
513 g kg-1 in the subsurface layer. In general, the area is classified as a medium texture (≈ 321 g kg-

1). The soil shows highly acidic conditions (<5.0 CaCl2), lying regions with very high acidity (<4.3 
CaCl2). Phosphorus and copper showed higher coefficients of variation in the surface layer, ranging 
from low values (4 and 0.3 mg dm-3 to P and Cu, respectively) to high (52 and 5.5 mg dm-3 to P and 
Cu, respectively). In the subsurface layer Al and Cu showed the highest coefficients of variation. The 
potassium content, in both layers, are laying at low levels (<1.5 mmolc dm-3). The ARP® sensor 
showed that the most density measurements (≈ 2896 readings ha-1), corresponding approximately to 
one measurement every 0.30 m (Table 2). Veris 3100® and EM38-MK2® showed a measurement 
density of approximately 401 and 721 points ha-1, respectively.  With the exception of 
electromagnetic induction sensor, resistivity sensors showed only positive measurements, with an 
average of 4.676 and 3.157 mS m-1 for the ARP® and Veris 3100®. The EM38-MK2® sensor ranged 
from -71.280 to 75.200              mS m-1, presenting a coefficient of variation of -39.52%. The higher 
coefficient of variation was found in Veris 3100® sensor (60%) and the highest skewness and kurtosis 
for the ARP® sensor. The spatial correlation Moran Index was higher for the EM38-MK2® sensor (MI 
= 0.94), while for Veris 3100® sensor was equal to 0.33. The ARP® sensor showed an index equal to 
0.68. Direct contact sensors showed a direct correlation (r = 0.45), while the EM38-MK2® and Veris 
3100® sensors showed inverse correlation (r = -0.52), both significant at 5%. The EM38-MK2® and 
ARP® sensors were not statistically correlated (Table 3). The sensor for electromagnetic induction 
(EM38-MK2®) showed a strong direct correlation with the soil clay content (r = 0.83 for both layers), 
followed by direct contact sensor Veris 3100®, which showed moderate negative correlation (r = -0.48 
and -0.51 for the surface and subsurface layers, respectively) (Table 4). Unlike other sensors did, 
ARP® sensor showed no significant correlation with clay content. The organic matter content also 
strongly correlated with the EM38-MK2® sensor (r = 0.73 and 0.77, respectively) and moderately with 
the Veris 3100® sensor (r = -0.50 and -0.53, respectively). The ARP® sensor showed evidence of 
correlation with the soil pH (r = 0.54 and 0.59) and the cations Ca2+ (r = 0.48 and 0.55) and Mg2+ (r = 
0.42 and 0.40) in the surface and subsurface layers, respectively, and Boron in the surface layer (r = 
-0.56). The cation exchange capacity (CEC), copper and manganese contents were best reflected by 
electromagnetic induction sensor for the two layers of investigation. Through the application of 
principal component analysis (PCA) we found that the first two components explain for more than 
60% of the total variability of the evaluated soil attribute data (65.35% and 63.52% for layers 0.00 to 
0.25 and 0.25 to 0.50 m, respectively) (Figure 3). For both layers, the first principal component (PC 
1), which explains the greater variability of data, is best represented by the clay, OM, Mn, Cu and 
CEC, and the correlation of these attributes with the PC1 is negative and positive for the surface and 
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subsurface layers, respectively. The second main component (PC 2) best represents the attributes 
phosphorus and boron (positive correlation) to the first layer and the attributes phosphorus and Fe 
(negative correlation) to the second layer. The correlation of the first two principal components with 
ECa data of the three evaluated sensors (Table 5) show that the EM38-MK2® sensor correlated 
better with these components compared to other sensors, in the surface layer (r = -0.47 and 0.69 to 
PC1 and PC2, respectively) and subsurface layer (r = 0.60 and 0.52 for PC1 and PC2, respectively), 
both significant at 5%. The ARP® sensor correlated better with PC2, negatively in the surface layer (r 
= -0.44) and positively in the subsurface layer (r = 0.44). Veris 3100® sensor correlated better in the 
surface layer with PC2 (r = -0.49) and in the subsurface layer with the PC1 (r = -0.55). 

Discussion 
Intrinsically related to the clay content in the soil, organic matter content did not follow the same 
trends of this property and decreased in depth. The OM of an arable land tends to decrease in depth 
in soils cultivated with sugarcane, where in the first 0.40 m soil depth contain about 80% of crop roots 
(Otto et al., 2008ab), which contribute with organic matter soil reservoir. The OM content is within of 
the range for medium texture soils, ranging from 10 to 25 g dm-3 in the surface layer (Raij et al., 
1997). The electromagnetic induction sensor showed this trend correlation between the properties of 
clay and OM, and the sensor that showed the best correlation with these properties. In fact, in 
tropical environments there is a direct correlation between the clay content and the OM (Raij et al., 
1991), because the places with higher clay content its ability to save OM (protection of organic 
compounds soil between clay aggregates, reducing its consumption by microorganisms). The EM38-
MK2® sensor also evidenced the availability of micronutrients such as Cu and Mn, also correlated 
with the organic matter content of the soil. The high capacity of the electromagnetic induction sensor 
to capture the variability in soil texture (r = 0.83) could reflect indirectly the soil properties related to 
the clay content. The case of OM and micronutrients Cu and Mn. Direct contact sensors reflected 
better elements such as pH, Ca and Mg, where the soil has, on average, high acidity (pH <5.0) and 
high concentrations of Ca (both layers) and Mg (the surface layer). These facts raise the hypothesis 
that the direct contact of the sensor with the soil (resistivity sensors) better reflects the places where 
the concentration of the latter elements in the soil is higher. Since the EMI based sensor to be highly 
influenced by the variability of texture (Castrignàno et al., 2012), the elements related to the 
concentration of salts in the soil, such as Ca, Mg and K, influenced least the sign of electromagnetic 
current induced by this sensor. A not expected result in this study was the differences between the 
ECa maps measured by the resistivity and electromagnetic induction principles. Although some 
areas of the field present similarities (plot located to the east of the field), the region located at north, 
place of lower altitude, showed completely different behavior, where the EM38-MK2® sensor showed 
higher ECa and the other two sensors showed lower ECa. Directly correlated to the clay content of 
the soil, the ECa presents greater in areas where the clay content is higher (Corwin and Lesch, 
2005) as evidenced by the EM38-MK2® induction sensor. However, the direct contact sensors 
reflected an inverse behavior in the north region of the field, where may be assigned for other soil 
properties that directly affect the readings, such as soil compaction, soil type and/or soil porosity 
(Corwin and Lesch 2005; Kitchen et al., 1999; McBratney et al., 2005; Sudduth et al, 2001). The 
different depths of ECa measurements can be another factor that accounts for the difference found in 
the data. However, a more detailed research in the field scale is required to explain the causes of 
variability among ECa sensors evaluated. On the other hand, it is possible to observe a larger 
amount of noise present in the ECa data of direct contact sensors compared to the electromagnetic 
induction sensor. Moran's index highlights this fact, where the EM38-MK2® sensor (MI = 0.94) 
showed a high spatial structure highlighting an interesting attribute of management from the point of 
view of the precision agriculture. Soil properties, which present a low Moran index (MI ≈ 0), show a 
random distribution, indicating great difficulty managing located by AP techniques. The Veris 3100® 
sensor presented the lowest Moran index (MI = 0.33), suggesting that proper treatment of data must 
be applied for withdrawal of the noise (not performed in this study). The reduction of 14 soil attributes 
evaluated, by the principal component analysis, could explain approximately 60% of the variability of 
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the data for both layers of soil, through the first two principal components. The first main component 
(PC1) is characterized mainly by the composition of clay, organic matter and CEC attributes to the 
two layers of soil evaluated, where these attributes are extremely important for the sugarcane crop 
management. The EMI sensor was that showed the best correlation with this component (PC1). The 
high spatial structure, and consequently a smaller amount of noise in the data, shows that ECa 
sensor based on EMI was able to detect, with greater accuracy, the spatial variability of soil 
properties, as evidenced by the correlation with the first principal component. 

Conclusion 
The apparent electrical conductivity sensors are sensible to different sources of variation, requiring 
further field investigation of the causes of this differences. Resistivity sensors are forced to deal with 
to a greater amount of noise. The electromagnetic induction sensor was able to better detect the 
spatial variability of soil fertility, with better correlations with clay and OM content in the field. By using 
commercially available ECa sensors, it is possible to quickly and efficiently, assess the spatial 
variability of the soil, supporting producers to have a powerful tool for local crop management. 
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Table 1. Basic statistics of soil attributes at 0.00 to 0.25 m and 0.25 to 0.50m. 

 

N Mean Median Min. Max. Var. SD CV Skew. Kurt. 

 

0.00 to 0.25 m 

Clay 34 321.71 274.00 212.00 494.00 8852.15 94.09 29.25 0.78 -1.04 

OM 34 16.71 16.00 10.00 25.00 23.85 4.88 29.23 0.49 -1.08 

pH 34 5.02 5.00 4.30 6.00 0.23 0.48 9.57 0.10 -1.14 

P 34 10.00 6.00 4.00 52.00 107.64 10.37 103.75 2.82 8.58 

K 34 1.10 1.09 0.26 2.33 0.21 0.46 41.48 0.38 0.21 

Ca 34 13.84 11.83 4.62 32.45 52.35 7.24 52.26 0.84 -0.13 

Mg 34 7.01 6.39 3.36 13.32 8.29 2.88 41.05 0.60 -0.69 

Al 34 0.94 0.58 0.27 3.55 0.68 0.83 87.71 1.88 2.92 

CEC 34 45.02 41.92 32.59 68.47 96.25 9.81 21.79 0.90 -0.16 

BS 34 47.62 46.71 22.60 69.33 212.16 14.57 30.59 -0.12 -1.26 

B 34 0.17 0.17 0.10 0.26 0.00 0.04 23.58 0.40 -0.51 

Cu 34 1.71 0.70 0.30 5.50 2.74 1.66 97.10 1.04 -0.27 

Mn 34 4.87 4.35 1.10 15.10 10.47 3.24 66.42 1.38 2.14 

Fe 34 11.24 10.00 4.00 26.00 26.31 5.13 45.65 0.90 0.51 

 

0.25 to 0.50 m 

Clay 34 362.21 322.50 261.00 513.00 7307.08 85.48 23.60 0.69 -1.15 

OM 34 12.29 11.50 8.00 18.00 10.46 3.23 26.30 0.45 -1.08 

pH 34 4.68 4.60 4.20 5.90 0.21 0.45 9.69 1.10 0.77 

P 34 5.00 4.00 3.00 15.00 4.00 2.00 40.00 3.98 19.55 

K 34 0.63 0.63 0.20 1.51 0.07 0.27 42.72 1.36 3.04 

Ca 34 6.52 5.60 2.27 15.35 10.53 3.25 49.76 1.22 1.23 

Mg 34 4.97 4.74 1.88 10.40 5.42 2.33 46.82 0.79 -0.11 

Al 34 1.59 0.96 0.26 4.89 1.78 1.33 83.72 1.10 0.03 

CEC 34 37.22 36.53 28.37 49.06 26.52 5.15 13.84 0.36 -0.52 

BS 34 32.93 33.00 12.54 59.93 173.88 13.19 40.05 0.21 -1.02 

B 34 0.16 0.15 0.10 0.26 0.00 0.03 22.38 1.03 1.35 

Cu 34 1.19 0.70 0.30 3.50 1.02 1.01 85.04 0.96 -0.47 

Mn 34 3.40 2.30 0.70 10.30 7.15 2.67 78.67 1.22 0.48 

Fe 34 5.74 5.00 2.00 11.00 3.47 1.86 32.49 1.19 1.87 

Min. – Minimum Value; Max. – Maximum Value; Var. – Variance; SD – Standard Deviation; CV – Coefficient of Variation; Skew. – 
Skewness; Kurt. – Kurtosis. 
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Table 2. Basic statistics of Electrical Conductivity sensors.  

 
N Mean Median Min. Max. Var. SD CV Skew. Kurt. Moran’s I 

 
 ECa [mS m-1] 

ARP® 289621 4.676 4.297 1.940 24.800 3.345 1.829 39.114 2.146 10.616 0.68 

Veris 3100® 40114 3.157 2.900 0.225 7.670 3.616 1.901 60.231 0.538 -0.307 0.33 

EM38-MK2® 72088 -59.963 -71.249 -71.280 75.200 561.737 23.701 -39.526 1.735 1.631 0.94 

Min. – Minimum Value; Max. – Maximum Value; Var. – Variance; SD – Standard Deviation; CV – Coefficient of Variation; Skew. – 
Skewness; Kurt. – Kurtosis. 

 
Table 3. Pearson’s correlation matrix between ECa sensors. 

 
ARP® Veris® EM38-MK2® 

ARP®  1.00 
  

Veris®  0.45* 1.00 
 

EM38-MK2®  -0.09 -0.52* 1.00 

 * Significant at 5%. 

 
Table 4. Pearson’s correlation matrix between ECa sensors and soil attributes at 0.00 to 0.25 m and 0.25 m to 0.50 m. 

 

 
Clay OM pH P K Ca Mg Al CEC BS B Cu Mn Fe 

 
0.00 to 0.25m 

ARP® 0.07 -0.01 0.54* 0.16 -0.24 0.48* 0.42* -0.27 0.19 0.55* -0.56* 0.05 -0.06 -0.06 

Veris® -0.48* -0.50* 0.32 0.15 -0.38* 0.13 0.02 0.02 -0.26 0.30 -0.29 -0.49* -0.34* 0.12 

EM38-MK2® 0.83* 0.73* -0.26 0.21 0.29 -0.07 0.02 0.02 0.42* -0.31 0.20 0.87* 0.77* -0.31 

 
0.25 to 0.50m 

ARP® 0.07 0.03 0.59* 0.11 -0.38 0.55* 0.40* -0.37 0.02 0.52* -0.34* -0.01 0.00 -0.36 

Veris® -0.51* -0.53* 0.35 0.12 -0.37* 0.26 0.28 -0.12 -0.37 0.43 -0.01 -0.53* -0.38* -0.13 

EM38-MK2® 0.83* 0.77* -0.06 -0.09 0.20 -0.18 -0.32 -0.21 0.37* -0.38 -0.08 0.83* 0.72* -0.21 

* Significant at 5%. 

 

Table 5. Pearson’s correlation matrix between ECa sensors and principal components PC1 and PC2 at 0.00 to 0.25 m and 0.50 m 
to 0.50 m. 

  
0.00 to 0.25 m 

 
0.25 to 0.50m 

  
PC 1 PC 2 

 
PC 1 PC 2 

ARP® 
 

-0.33 -0.44* 
 

-0.39* 0.44* 

Veris® 
 

0.22 -0.49* 
 

-0.55* -0.16 

EM38-MK2® -0.47* 0.69* 
 

0.60* 0.52* 

 * Significant at 5%. 
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Fig 1. Electrical Conductivity sensors tested. (A) ARP® (Geocarta, France, Paris), (B) Veris 3100® (Veris technologies, Kansas, 

United States) and (C) EM38-MK2® (Geonics, Toronto, Canada).
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Fig 2. Electrical Conductivity [mS m-1] maps by ARP® (left), Veris 3100® (middle) and EM38-MK2® (right) with soil samples (black dots) taken in strategic places of the field. Detail 

of the field elevation [m]. 
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Fig 3. Projection of soil variables on the Component-Plane for PC1 and PC2 at 0.00 to 0.25 m (left) and 0.25 to 0.50 m (right). 
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