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Abstract. In precision agriculture, the understanding of yield variability, both spatial and temporal, 
can deliver essential information for the decision making of site-specific crop management. Since 
commercial yield mapping started in the early 1990s, most research studies have focused on 
spatial variance or short-term temporal variance analyzed statistically in order to produce trend 
maps. Nowadays, longer records of high-quality yield data are available offering a new potential 
to evaluate yield variability over time by using alternative (to the traditionally statistical approach) 
analysis methods, for example pattern recognition. The research idea of Multi-temporal Yield 
Pattern Analysis (MYPA) was inspired by the digital soil mapping method Multitemporal Soil 
Pattern Analysis (MSPA). In order to produce soil property maps, the MSPA method extracts 
stable soil reflectance pattern from satellite time series using pattern recognition combined with 
statistical pattern stability analysis. The MYPA approach is the adaption of image analysis 
techniques of the remote sensing discipline (here: pattern recognition) to agronomic data (here: 
yield data). The current state of the MYPA method will be presented that makes it possible to i) 
select outlier yield maps from yield map time series, ii) detect spatially homogenous yield pattern, 
and iii) evaluate their spatiotemporal variability. This method enables the generation of site-
specific crop management zones considering both the productivity and stability of yield over space 
and time. The MYPA method consists basically of following steps: (1) identification and elimination 
of outlier yield maps, (2) yield pattern detection using principal component analysis; (3) evaluation 
of spatiotemporal yield pattern stability using statistical per-pixel analysis; and (4) management 
zones delineation based on k means clustering. Results from one demonstration field are 
presented and contrasted (with favourable outcomes) with the more traditional statistical mean 
approach to multi-temporal yield pattern delineation. 
Keywords. Yield maps, Spatio-temporal yield variability, k-means clustering, Principal 
component analysis. 
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1 Introduction  
The use of yield sensors at harvest is the only definitive way that final production data can be 
gathered in crop production systems, particularly cereal systems. Yield prediction approaches 
exist (Basso et al. 2013; Meroni et al. 2013; Rembold et al. 2013; Shanahan et al. 2001) that can 
provide information on expected yields. However, predictions are always subject to potential in-
season effects, particularly mid-season (e.g. frost) that affect grain set and late-season that may 
affect grain fill (e.g. water limitation or extreme weather). For this reason, yield sensors linked to 
Global Navigation Satellite Systems (GNSS) are the only way of site-specifically auditing yield. 
Yield sensing and mapping has been performed since the beginning of site-specific crop 
management, and was one of the key technologies that lead to the development of this domain. 
It became clear from an early stage that the temporal analysis of yield patterns was likely to be 
as important as the spatial analysis (McBratney et al. 1997). Temporal analysis has been slower 
to be addressed, in part because it takes several years to generate a suitable data set. Several 
early attempts were made in the late 1990s and early 2000s to address temporal variability issues 
using short time-series of yield maps (Blackmore and Moore 1999; Blackmore et al. 2003; Pringle 
et al. 2003; Stafford et al. 1996). These mainly addressed the average yield and temporal variance 
statistically and employed trend maps.  
Since 2005 there has been relatively little work published on the analysis of the temporal variance 
in yield maps despite over this period larger temporal yield data sets being generated by growers. 
However, the importance of the temporal variance has not diminished, nor the need to manage 
this, particularly in relation to the spatio-temporal patterns that can be generated from weather-
crop interactions (e.g. Taylor et al. 2007). A recent paper (Leroux et al. 2018) has revisited this 
issue and applied a segmentation approach to the analysis of multi-year spatial yield monitoring 
data. Given the availability within the industry of these historical datasets, there is a clear need 
for methods of data processing to provide growers with information on the temporal variability 
within their system. Manually assessing 5-15 years of yield data in the form of maps, often with 
error measurement errors included, is difficult even for the manager of the field.  
In this paper, an approach based on pattern recognition (associated with image analysis) is 
proposed as a method for integrating multi-year yield data into several information layers to assist 
with management, particular risk management, in cereal production systems. These information 
layers assess at the local scale both the relative yield response over time as well as the stability 
or certainty of the yield response in any given year. The approach is derived from a recently 
published methodology for assessing soil patterns within multi-temporal bare soil images (Blasch 
et al. 2015a, 2015b). 

2 Materials and Methods 

2.1 Site Description 
The approach is demonstrated on an 80-ha field (-29°49'47"S, 150°00'21"E, 324 m above sea 
level) in a mixed cropping enterprise. The field (AOI1 Moree) is located ~43 km southeast of 
Moree, New South Wales, Australia. The topography is undulating with the predominant soil type 
on the cropping areas (flat and gently rolling terrain) being Vertisols (cracking clays) with shrink-
swell properties upon drying and wetting (ASRIS 2011; FAO et al. 1998; Northcote et al. 1960-
1968). The climate is humid subtropical (Köppen-Geiger climate: Cfa; Peel et al. 2007) with a 
summer dominant rainfall and high evaporation rates in summer. The long-term (1995-2016) 
average minimum and maximum temperature are 12.5°C and 26.7°C and mean rainfall is 589.3 
mm/year (Moree Aeroport weather station; Australian Bureau of Meteorology 2016). 

2.2 Pre-processing of Yield Data and Yield Map Generation 
To analyze the multi-temporally complexities in yield patterns, a seven-year yield map time series 
within the period 1997 to 2006 was obtained. Yield data (1996-2004) were recorded at harvest 
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using a Case IH combine harvester equipped with an AgLeader Yield Monitor. In 2005-2006 a 
John Deer harvester with the Greenstar yield monitoring system was used. No yield data were 
collected in 2001, which was a planned fallow season and in 2002 due to crop failure associated 
with drought. The field is managed in a three year crop rotation (nominally wheat (Triticum 
aestivum), wheat, break crop), with the break crop typically being a legume (e.g. Chickpea (Cicer 
arietinum)). The production system is rain-fed only. In years with dry conditions leading into a 
winter crop, the winter crop may be abandoned before sowing and the field left fallow leading into 
a summer cereal (Sorghum (Sorghum bicolor)).  
Yield data were cleaned and removed of outliers (values > ±2.5σ) following the protocol of Taylor 
et al. (2007). Data were then interpolated onto a common 5 m grid using block-kriging (10 m 
blocks) with a local variogram using the Vesper shareware (Minasny et al. 2005). As a common 
grid was used, data from all years were interpolated to the same grid nodes, generating co-located 
data. The raw data is irregularly spaced and not co-located, due to differences in harvest 
operations each year. Interpolated data was stored in a geo-database and geo-tiffs were 
generated for each year using ArcMap v10.3 (ESRI, Redlands, CA). The descriptive statistics of 
the filtered yield data are shown in Table 1. 
Table 1: Descriptive statistics of yield data collected from each year, including crop harvested. All data expressed as t/ha.  

Yield (t/ha) Mean Std. Deviation Minimum Maximum 
Sorghum 1997 3.45 1.28 0.40 6.27 
Sorghum 1998 5.41 0.71 3.05 7.21 
Chickpea 1999 1.31 0.32 0.06 2.25 

Wheat 2000 2.55 0.60 0.78 4.30 
Wheat 2004 4.85 0.59 2.52 6.22 

Sorghum 2005 3.53 0.54 1.65 4.80 
Chickpea 2006 1.70 0.35 0.87 2.58 

2.3 Multi-temporal Yield Pattern Analysis (MYPA) Workflow  
The Multi-temporal Yield Pattern Analysis (MYPA) approach presented here is composed of four 
processing steps: (1) data mining and preparation, (2) yield pattern detection, (3) spatiotemporal 
yield pattern stability analysis, and (4) yield productivity-stability zones delineation (Figure 1). 

 

Figure 1: Schematic illustrating the processing steps of the MYPA workflow, including key actions, to generate a final map. 

2.3.1 Data Mining and Preparation  

The two main goals of the data mining step are; 
a) the identification and elimination of outlier yield maps from the yield map time series and,  
b) data normalization to permit comparison of yield from different crops with potentially very 
different yield values.  
Important data features such as outliers and departures from a multi-normal distribution can be 
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identified using PCA. Accordingly, PCA was applied to a multi-temporal layer stack of all yield 
data sets, where one layer represents one yield map, i.e. one year of yield data. The visualization 
of resulting eigenvectors in plotted data points by PC1 and PC2 (Figure 2a) shows clearly that 
the wheat yield map from 1997 (wheat_97) is deviating considerably from the norm of all yield 
data sets. Consequently, this yield data set was assumed as outlier and removed from the layer 
stack after visual validation and discussion with the grower. This outlier detection procedure was 
iterated as long as no other outlier data set was identified. Here, after the second iteration, no 
other outlying data set was detected (Figure 2b) although various years did appear to group along 
different vectors. 

  

(a) (b) 

Figure 2: Eigenvectors (red arrows) and data values by PC1 and PC2 (black points) – (a) of all yield data sets after first 
iteration; (b) of remaining yield data sets after second iteration of the outlier detection process. 

Normalization of yield data to the mean or maximum is a common method to compare different 
crops for the same field. Here, the remaining yield maps were normalized to the maximum by 
calculating normalized yield pixel values (Ynorm) for each single yield map data set using equation 
1: 

𝑌"#$% = 	
𝑌 − 𝑌%)"
𝑌%*+ − 𝑌%)"

+ 1 (1) 

where Ynorm is the normalized yield pixel value, Y the original yield pixel value, and Ymin and Ymax 
the minimum and maximum pixel value of each yield map data set. Thus, the yield data of each 
year were scaled between 1 and 2, and the potential disproportionate varying influence from the 
magnitude and variation of different crop types was eliminated. Figure 3 shows the normalized 
yield maps, including the previously removed outlier yield map from 1997 (wheat 1997). For 
consecutive MYPA processing steps, a layer stack of the six remaining normalized yield data was 
generated. 
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Figure 3: Normalised yield maps with varying crop types (Sorghum, Chickpea, and Wheat) including the outlier yield map 
(wheat 1997). 

2.3.2 Yield Pattern Detection  

In the remote sensing discipline, digital image processing is used to reduce disturbance impacts 
on data, prepare images for consecutive processing, as well as extract and interpret acquired 
information. Complex spectral pixel operations such as Principal Component Analysis (PCA) are 
highly suitable for pattern recognition, change detection, and stability analysis using satellite time 
series or other multi-temporal data sets. PC transformation – a linear transformation of correlated 
original spectral bands – is one of the most common complex pixel operations applied to analyze 
highly correlated multi-dimensional data without harming the band information, remove redundant 
information, isolate noise components, and reduce dimensionality without significant information 
loss (Panda et al. 2010). The produced uncorrelated output bands (principal components - PCs), 
which are rotated to a data variance maximum, allow for the identification of patterns in the data 
describing the spectral variance, highlighting their similarities and differences, to expose the 
underlying dimensionality of multivariate data, and to compress image data (Abdel-Kader 2011; 
Mulla 2013; Smith 2002). 
To detect spatio-temporal yield patterns, PC transformation (PCA) (software R: package 
“RStoolbox”; Leutner et al. 2018; R Core Team 2018) was applied to multiple normalized yield 
maps (images) from different years and varying crop types, whereby the layer stack of normalized 
yield maps (here: 6 layers) acts as a spectral image and each yield map layer as one spectral 
band. In order to identify those PCs which are most responsible for yield pattern over time, the 
relationships between normalized yield and PCs were analyzed using linear regression analysis, 
and as correlation measure the coefficient of determination (R2) was computed. Therefore, the 
location-specific normalized yield value from each yield map, and the corresponding PC values 
were extracted at every pixel. PCs with at least moderate correlation (R2 ≥ 0.5) were selected for 
the final processing step to generate yield productivity-stability zones (section 2.3.4). 
2.3.3 Spatiotemporal Pattern Stability Analysis  

The multi-temporal approach makes it possible to evaluate the spatial variability over time. Taking 
advantage of that, the spatio-temporal stability of yield responses were analyzed using statistical 
per-pixel analysis on the layer stack of the normalized yield data. For each pixel, the standard 
deviation (SD) of normalized yield was calculated across this multi-temporal stack. This generated 
a final image indicating the variance of response, or rather the relative stability of yield response, 
over the 6 field-years. 
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2.3.4 Yield Productivity-Stability Zones Delineation 

The best performing PCs (section 2.3.2) and the overall stability (SD) (section 2.3.3) were 
selected as the desired data layers for the delineation of yield productivity-stability zones and 
subsequently stacked into one final layer stack. A k-means clustering approach (software R: 
package “cluster”; Maechler et al. 2018; R Core Team 2018) was performed to generate yield 
zones using PCs for yield productivity and the SD layer for the stability of yield variability 
(respectively stability). Briefly, the k-means clustering method aims to allocate the pixel values of 
desired data layers (here: PC1, PC2, PC5, and SD) into k-classes (clusters) in order to minimize 
the within-cluster variability and maximize the differences between the means of the k-classes. 

2.4 Statistical Approach 
In order to compare the MYPA approach with the “traditional” statistical approach, the average 
normalized yield using the arithmetic mean (MEAN) was calculated for each pixel across the 
normalized yield maps. Subsequently, a final two layer stack composed of MEAN and SD (section 
2.3.3) was generated and regression analysis preformed. This two layer stack was also used for 
k-means clustering to obtain yield productivity-stability zones (according to section 2.3.4). 

2.5  Zonal Statistics/MANOVA 
To statistically compare the yield zones generated by the MYPA and the traditional MEAN 
approaches, a MANOVA analysis was performed using the all 6 years of yield data as the 
dependent variables and the derived zones from the two different approaches (MYPA with PC1, 
PC2 and PC5, and MEAN) as the independent variables. MANOVA uses discriminant analysis to 
‘simplify’ the multi-temporal yield data into a single variable that is then related to the zoning 
approaches. The quality of the zoning models is assessed using Pillai’s Trace, with a higher value 
indicating a better model fit. Wilks’ Lambda, an alternative measure, is also presented (with lower 
values indicating better model fit). 

3 Results and Discussion  
To demonstrate the high potential of pattern recognition based on PCA, it is essential to identify 
those PCs that explain yield patterns for subsequent steps in the MYPA processing. The obtained 
best PCs and computed overall stability of yield pattern allow the delineation of yield productivity-
stability zones. These results were compared with the traditional statistical approach (here: 
MEAN). 

3.1 Data Mining and Preparation 
The PCA of the yield maps indicated that the 1997 yield map was an outlier in the yield map stack 
(Figure 2a). It can be clearly seen that the northern part of the field in this year (Figure 3) has a 
very low yield response. This was due to double cropping in that part of the field causing a large 
water deficit in the winter wheat production. It is clear that the pattern here is dominated by a 
“one-off” management decisions and that this information should be removed. The subsequent 
PCA did not highlight any outliers (Figure 2b). However it is clear that there is some management 
effect in the Sorghum 2006 data (a clear horizontal delineation between the north and south parts 
of the field). This yield map tracks similar to the Wheat 2004 map in the attribute space (Figure 
2b). It has higher yields on the central part of the field that typically has a lighter texture and 
shallow soil depth (see Taylor et al. 2007 for full details). This map could have been removed 
based on local opinion and an observable management effect, however since statistically it was 
not mapped as an outlier the decision was made to include it in the subsequent analysis. 

3.2 Yield Pattern Detection  
The PCA applied to the yield maps produced good results for yield pattern detection with little 
noise. Based on the covariance matrix, six principal components (PC 1-6) were calculated from 
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the transformation of the 6 layers of the normalized yield map layer stack. Maps of the 6 PCs 
generated are shown in Figure 4. The linear regression relationship between the PCs and 
normalized yield are given in Table 2.   

   

   

Figure 4: Detected pattern by the PCA approach (PC 1-6). 

Table 2: R2 for the relationship between normalised yield (dependent variable) and the PCs/MEAN (independent variable). 
Relationships where more than 50% of the yield variance was explained by a PC or MEAN are indicated in bold font. 

Yield PC1 PC2 PC3 PC4 PC5 PC6 MEAN 
Sorghum 1998 0.73 0.16 0.09 0.016 0.00034 1.7e-05 0.48 
Chickpea 1999 0.35 0.0044 7.7e-05 0.05 0.59 0.011 0.44 

Wheat 2000 0.78 7e-06 0.024 0.18 0.012 0.0037 0.67 
Wheat 2004 0.2 0.72 0.049 0.00062 0.0032 0.02 0.39 

Sorghum 2005 0.67 0.00014 0.22 0.097 3.5e-05 0.015 0.63 
Chickpea 2006 0.23 0.33 0.0015 0.063 0.011 0.36 0.49 

Each obtained uncorrelated output band (PC) contain a certain percentage of the total variance 
of the yield map time series: PC1 56.7 %, PC2 21.6 %, PC3 7.8 %, PC4 6.5 %, PC5 3.9 %, and 
PC6 3.4 %. 
By the pattern recognition approach, relatively good correlations for yield data were found with 
PC1 (R2: 0.78-0.67; Wheat 2000, Sorghum 1998, and Sorghum 2005), PC2 (R2 = 0.72; Wheat 
2004), and PC5 (R2 = 0.59; Chickpea 1999). PC1 picks up the ‘normal’ yield patterns that can be 
related to patterns in soil depth and moisture holding conditions in a typically water limiting 
production system. PC2 picks up a flip-flop effect in years where in-season rainfall permits 
stronger growth (and less water-logging) on lighter soils. PC5 describes an unusual year yield 
map that is fairly very even (Chickpea 1999). The management affected Chickpea 2006 yield 
map, which was not discarded in the preprocessing, has no dominant interaction with a PC but 
picks up weak relationships (R2: 0.23 – 0.36) with PCs 1, 2 and 6. It is likely due to the fact the 
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2006 yield contains elements of various PCs that it was not identified as an outlier in 
preprocessing. The management effect is evident in the PC6 map (Figure 4). 
In contrast, the statistical approach (MEAN) revealed relatively good relationships with just two 
yield map data sets (R2: 0.67-0.63; Wheat 2000 and Sorghum 2005 – Table 2). This demonstrates 
clearly that PCA is highly suitable for extracting yield patterns associated with differing production 
conditions and proves an improved potential for spatiotemporal yield analysis compared to the 
statistical approach, which melds and smooths conditions across years. Figure 5 shows the 
detected pattern using the statistical MEAN approach, which reveal similarities with the PC1-
pattern. 

 

Figure 5: Detected pattern by the statistical MEAN approach. 

3.3 Spatiotemporal Pattern Stability Analysis  
To evaluate the temporal-spatial stability of yield, statistical pixel-wise analysis using standard 
deviation (SD) over time as a measure was applied on the layer stack of remaining normalized 
yield data. This pattern stability evaluation method enabled the identification and visualization of 
yield variability in space and time, where high SD per pixel indicates high variability (unstable yield 
pattern) and low SD per pixel low variability (stable yield pattern) (Figure 6). Figure 6 shows a 
highly stable area in the south-western part of the field and moderate to highly unstable areas 
along the field boundary, especially in the northern and eastern part. This area of instability is 
associated with a small gully and an area of heavier clay soils in the field. In dry years, this area 
has better soil moisture availability, generating higher yields, however in ‘wet’ years its landscape 
position and heavier soil type is susceptible to water-logging effects. It tends to be either an area 
of higher or lower yields. 
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Figure 6: Spatiotemporal stability of yield pattern as SD of all normalised yield maps, showing the spatial yield variability 
over time. 

3.4 Yield Productivity-Stability Zones Delineation 
In order to produce information layers to support management decision (especially risk 
management) in cereal production systems, the MYPA approach using pattern recognition and 
image analysis techniques on agronomic yield data was developed and compared to a 
“traditional” statistical approach based on per-pixel calculation of the average yield response. For 
the demonstration field AOI1 Moree, site-specific management zones could be derived from both 
approaches, considering in both the productivity and stability of yield over space and time (Figure 
7). 

  

(a) (b) 

Figure 7: Yield productivity-stability zones – (a) based on PC1, PC2, PC5, and SD; (b) based on MEAN and SD. 

Similar size, shape, and distribution of yield zones across all four productivity-stability classes 
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were found in the southern part of Moree field and considerable differences in the center as well 
as in the northern and western parts. With the MYPA approach, larger stable areas were mapped 
at the field center with low productivity and at the western and northern parts with higher 
productivity. Overall, the MYPA approach produced more concise and manageable yield zones 
than the statistical approach. This would indicate that the MYPA pattern is more amenable to site-
specific management and technical constraints (Tisseyre and McBratney 2008) although a formal 
analysis of this has not yet been done. 
There is one large area of discrepancy between the two zoned outcomes, with the area labelled 
‘A’ in Figure 7 being classed as stable with the MYPA approach and unstable In the MEAN 
approach. This area is characterized by deeper, clay soils that tend to yield the highest in a normal 
year (e.g. 1998, 2000) but are prone to waterlogging in ‘wet’ years, with significant in-season 
rainfall (e.g. 2004), and have a relatively lower yield in those years. In the ‘wet’ years, the 
shallower, lower clay soils in other areas of the field tend to improve their yield. However, while 
the relative yield is lower in the ‘A’ area in 2004, the actual yield tends to be fairly stable, and it 
was actually slightly higher in this area in 2004 compared to 2000. The MYPA has identified that 
this area is stable in absolute terms, if not in relative terms between normal and ‘wet’ years. 
Tables 3 and 4 depict the average (mean) of yearly yield production according to crop type, yield 
variability over time (SD), and pattern detection variables (PC1, PC2, PC5, MEAN) for each 
derived yield zone based on zonal statistic calculation of all pixel values within the corresponding 
k-means cluster. The quality measures of MANOVA – Pillai’s Trace and Wilks’ Lambda – (Table 
5) reveal that the MYPA model is statistically the better model for yield data than the statistical 
approach. Generally, the lower Wilks’ Lambda and the higher Pillai Trace are the better fits the 
model to the analyzed data. Accordingly, the MYPA approach surpasses the MEAN approach 
(Table 5). 

Table 3: Zonal statistics of yield data [t/ha] within the k means clusters based on MEAN and SD. 

Cluster Interpretation Sorghum 
1998 

Chickpea 
1999 

Wheat 
2000 

Wheat 
2004 

Sorghum 
2005 

Chickpea 
2006 MEAN SD 

Dark green high; stable  5.99 1.56 3.23 5.36 4.07 2.14 1.73 0.102 
Light green high; unstable 5.69 1.42 2.78 5.00 3.74 1.72 1.61 0.154 
Dark blue low; stable 4.62 0.95 1.87 4.26 2.84 1.37 1.37 0.135 
Light blue low; unstable 5.16 1.22 2.24 4.68 3.33 1.58 1.50 0.140 

Table 4: Zonal statistics of yield data [t/ha] within the k means clusters based on PC1, PC2, PC5, and SD. 

Cluster Interpret
ation 

Sorghu
m 1998 

Chickpea 
1999 

Wheat 
2000 

Wheat 
2004 

Sorghum 
2005 

Chickpea 
2006 PC1 PC2 PC5 SD 

Dark 
green 

high; 
stable  

5.22 1.30 2.51 5.35 3.54 1.92 0.03 -0.57 0.02 0.129 

Light 
green 

high; 
unstable 

6.08 1.55 3.23 5.07 4.01 1.83 1.12 0.08 -0.01 0.134 

Dark 
blue 

low; 
stable 

4.43 1.11 1.93 4.67 2.95 1.52 -1.31 -0.24 -0.02 0.131 

Light 
blue 

low; 
unstable 

5.63 1.19 2.29 4.21 3.43 1.48 -0.29 0.71 0.01 0.152 

Table 5: MANOVA of clusters based on PC1, PC2, PC5, and SD compared to clusters based on MEAN and SD. 
Model Wilks’ Lambda Pillai Trace 

MEAN-SD 0.39 0.69 
PC125-SD 0.29 0.89 

Visually the two approaches to yield zoning presented in Figure 7 show similarities, however the 
MYPA approach (Figure 7a) has larger, more coherent zones than the MEAN approach (Figure 
7b). The MYPA approach, with this example at least, appears to be presenting a better statistical 
and technical option than the historic statistical approach. Further work will examine if this holds 
true with other yield time-series and how it compares to other emerging approaches (e.g. LeRoux 
et al. 2018). 

4 Conclusions 
This study has shown that multitemporal analysis of agronomic data (here: yield data) using 
pattern recognition techniques offers high potential to reveal spatiotemporally precise and stable 
or unstable yield production zones at the local scale. For the detection of outlier yield data sets 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 13 

from multi-year yield maps, PCA was demonstrated as an efficient approach to identify years with 
management effects (e.g., “one-off” management decisions, double cropping). Compared to 
common statistical analysis approaches, the MYPA method surpass clearly the delineation of 
coherent and practical management zones, as demonstrated by MANOVA. Overall, derived 
information layer might be of great value to assist decision making in cereal production systems. 

Acknowledgements 
The authors would like to acknowledge the support of Mr Michael Smith for use of his yield data 
and Dr Brett Whelan from the Precision Agriculture Laboratory, the University of Sydney for 
providing the yield data. This work was performed as part of a UK Newton Fund Project to look at 
methods for improving Precision Agriculture in Family-sized Farms with an emphasis on Chinese 
systems. 

References 
Abdel-Kader, F. H. (2011). Digital soil mapping at pilot sites in the northwest coast of Egypt: A 
multinomial logistic regression approach. The Egyptian Journal of Remote Sensing and Space 
Science, 14, 29-40. 
ASRIS (2011). ASRIS - Australian Soil Resource Information System. Available at 
http://www.asris.csiro.au (verified 27 April 2018). 
Australian Bureau of Meteorology (2016). Climate statistics for Australian locations. Summary 
statistics MOREE AERO. Available at http://www.bom.gov.au/climate/averages/tables/cw_053115.shtml 
(verified 27 April 2018). 
Basso, B., Cammarano, D., Carfagna, E. (2013). Review of crop yield forecasting methods and 
early warning systems. Improving methods for crops estimates. Rome, Italy: FAO Publication. 
Blackmore, B. S., Godwin, R. J., Fountas, S. (2003). The Analysis of Spatial and Temporal Trends 
in Yield Map Data over Six Years. Biosystems Engineering, 84(4), 455-466. 
Blackmore, B. S. & Moore, M. (1999). Remedial correction of yield map data. Precision 
Agriculture, 1, 53-66. 
Blasch, G., Spengler, D., Hohmann, C., Neumann, C., Itzerott, S., Kaufmann, H. (2015a). 
Multitemporal soil pattern analysis with multispectral remote sensing data at the field-scale. 
Computers and Electronics in Agriculture, 113, 1-13. 
Blasch, G., Spengler, D., Itzerott, S., Wessolek, G. (2015b). Organic matter modelling at the 
landscape scale based on multitemporal soil pattern analysis using RapidEye data. Remote 
Sensing, 7, 11125-11150. 
FAO, ISRIC, ISSS (1998). World Reference Base for Soil Resources. World Soil Resources 
Report No.84. Rome, Italy: FAO Publication. 
Leroux, C., Jones, H., Taylor, J. A., Tisseyre, B., Clenet, A. (2018). A zone-based approach for 
processing and interpreting variability in multi-temporal yield data sets. Computers and 
Electronics in Agriculture, 148, 299-308. 
Leutner, B., Horning, N., Schwab-Willmann, J. (2018). RStoolbox: Tools for Remote Sensing Data 
Analysis. R package version 0.2.1. Available at https:// CRAN.R-project.org/package=RStoolbox 
(verified 27 April 2018). 
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2018). cluster: Cluster Analysis 
Basics and Extensions. R package version 2.0.7-1. Available at https://cran.r-
project.org/web/packages/cluster/index.html (verified 27 April 2018). 
McBratney, A. B., Whelan, B., Shatar, T. (1997). Variability and Uncertainty in Spatial, Temporal 
and Spatiotemporal Crop-Yield and Related Data. Ciba Foundation symposium. 210. 141-60. 
10.1002/9780470515419.ch9.  



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 14 

Meroni, M., Marinho, E., Sghaier, N., Verstrate, M. M., Leo, O. (2013). Remote Sensing Based 
Yield Estimation in a Stochastic Framework - Case Study of Durum Wheat in Tunisia. Remote 
Sensing, 5, 539-557. 
Minasny, B., McBratney, A. B., Whelan, B. M. (2005). VESPER version 1.62.Australian Centre 
for Precision Agriculture, McMillan Building A05, The University of Sydney, NSW 2006. Available 
at https://sydney.edu.au/agriculture/pal/software/vesper.shtml (verified 27 April 2018). 
Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances 
and remaining knowledge gaps. Biosystems Engineering, 114, 358-371. 
Northcote, K. H., Beckmann, G. G., Bettenay, E., Churchward, H. M., Van Dijk, D. C., Dimmock, 
G. M., Hubble, G. D., Isbell, R. F., McArthur, W. M., Murtha, G. G., Nicolls, K. D., Paton, T. R., 
Thompson, C. H., Webb, A. A., Wright, M. J. (1960-1968). Atlas of Australian Soils, Sheets 1 to 
10. With explanatory data. Melbourne, Australia: CSIRO Aust. and Melbourne University Press. 
Panda, S. S., Hoogenboom, G., Paz, J. O. (2010). Remote Sensing and Geospatial Technological 
Applications for Site-specific Management of Fruit and Nut Crops: A Review. Remote Sensing, 2, 
1973-1997. 
Peel, M. C., Finlayson, B. L., McMahon, T. A. (2007). Updated world map of the Köppen-Geiger 
climate classification. Hydrology and Earth System Sciences Discussions, 11, 1633-1644. 
Pringle, M. J., McBratney, A. B., Whelan, B. M., Taylor, J. A. (2003). A preliminary approach to 
assessing the opportunity for site-specific crop management in a field, using yield monitor data. 
Agricultural Systems, 76, 273-292. 
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/ (verified 27 April 
2018). 
Rembold, F., Atzberger, C., Savin, I., Rojas, O. (2013). Using Low Resolution Satellite Imagery 
for Yield Prediction and Yield Anomaly Detection. Remote Sensing, 5, 1704-1733. 
Shanahan, J. F., Schepers, J. S., Francis, D. D., Varvel, G. E., Wilhelm, W. W., Tringe, J. M., 
Schlemmer, M. R., Major, D. J. (2001). Use of remote-sensing imagery to estimate corn grain 
yield. Agronomy Journal, 93, 583-589. 
Stafford, J. V., Ambler, B., Lark, R. M., Catt, J. (1996). Mapping and interpreting the yield variation 
in cereal crops. Computers and Electronics in Agriculture, 14, 101-119. 
Smith L. I. (2002). A tutorial on principal components analysis. Cornell University, USA. p. 27. 
Taylor, J. A., McBratney, A. B., Whelan, B. M. (2007). Establishing Management Classes for 
Broadacre Agricultural Production. Agronomy Journal, 99, 1366-1376. 
Tisseyre, B., McBratney, A. B. (2008). A technical opportunity index based on mathematical 
morphology for site-specific management: An application to viticulture. Precision Agriculture, 9, 
101-113. 10.1007/s11119-008-9053-5. 
 


