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Abstract. A fundamental aspect of precision agriculture or site-specific crop management is the 
ability to recognize and address local changes in the crop production environment (e.g. soil) within 
the boundaries of a traditional management unit. However, the status quo approach to define 
local fertilizer need relies on systematic soil sampling followed by time and labour-intensive 
laboratory analysis. Proximal soil sensing offers numerous advantages over conventional soil 
characterization and has shown potential for management zone (MZ) delineation and site-specific 
crop management. While electromagnetic induction (EM) based sensors have been widely used, 
the use of spectroscopy-based sensors is still in its infancy. This study evaluated the capability of 
spectroscopy-based Veris P4000 soil sensor in predicting soil properties and two proximal soil 
sensors (EM-based DUALEM21S and Veris P4000) in delineating MZs from two commercial 
potato (Solanum tuberosum L.) fields from New Brunswick, Canada. The proximal sensor 
collected data (apparent electrical conductivity ECa and spectra) were then used to delineate MZs 
using the clustering method. The efficiency of the MZ delineation was then compared with the 
laboratory measured soil properties and the yield monitor data collected over three years. In total, 
295 soil samples were collected and analyzed using standard laboratory procedures. 
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DUALEM21S was used to map the ECa at four depths. Visible and near infrared (Vis-NIR) spectra 
(397-2212 nm wavelength) were collected in triplicate for all samples using the spectrometer from 
Veris P4000 system in laboratory conditions. The dataset was separated into calibration (70%) 
and validation subset (30%) and partial least square regression (PLSR) models with 
bootstrapping were developed and validated against laboratory measured soil properties. 
Spectroscopic system well predicted soil properties. It showed the strongest potential to predict 
soil organic matter (SOM) with the highest accuracy. Other soil properties that were either 
positively (e.g. Ca, Mg) or negatively correlated (e.g. pH, buffer pH) with SOM were also predicted 
with good accuracy. The point samples were then interpolated to field boundaries and used to 
develop MZs. The number of MZs were then optimized following the normalized classification 
entropy (NCE) and the fuzziness performance index (FPI). While lab measured physio-chemical 
properties identified three optimum MZs, the spectra predicted properties and DUALEM21S data 
identified two MZs. The choice of two MZs was consistent with the number of MZs identified from 
the yield monitor data. Clay content, soil moisture content and P concentration showed strongest 
correlations with yield variability among soil properties. DUALEM21S data from all four depths 
were strongly correlated with yield. In contrast, measured spectra showed relatively weak 
prediction (except principle component 1, PC1 and PC3) of yield. These results suggest that the 
EM based sensor was effective in delineating MZ, whereas more advancements are required to 
use spectra in MZ delineation. 
Keywords. Proximal soil sensing, management zones, soil spectroscopy, potato 

1. Introduction 
The success of precision agriculture (PA) is dependent on the identification of local changes in 
the crop production environment (e.g. soil) through delineation of management zones (MZs) 
within the traditional management unit and then addressing them variably (site-specific crop 
management). However, the status quo approach of defining soil fertility variations and site-
specific recommendations depend on traditional soil sampling followed by time and labor-
intensive laboratory measurements. Proximal soil sensing (PSS) technologies (measure the 
properties of soils when they are in contact with, or at a relatively short distance (under 2 m) from 
the target) have potential as less expensive per unit of area technologies for detailed soil 
characterization. They offer numerous advantages over conventional soil characterization and 
management recommendations. Some static PSS systems can in situ measure relative soil 
information, which are then calibrated against laboratory measured data accurately and rapidly. 
These provide promising alternatives to conventional laboratory soil tests. One example of such 
PSS systems is the field scanners for soil cores (e.g. Kusumo et al., 2010; Cho et al., 2017). On 
the other hand, on-the-go sensors (e.g. Mouazen and Kuang, 2016) can collect fine-scale relative 
soil information over the study area from increased density of measurements at a relatively low 
cost and can be critical for variable rate and site-specific application recommendations in 
environmental monitoring and precision agriculture.  
Various proximal soil sensors have been developed to measure different mechanical, physical 
and chemical soil properties based on electrical and electromagnetic, optical and radiometric, 
mechanical, acoustic, pneumatic and electrochemical measurement concepts (Adamchuk et al., 
2004). Among these, electrical and electromagnetic sensors measure electrical 
resistivity/conductivity, capacitance or inductance as affected by soil. This could be done either 
using direct injection of electrical current into soil with contact electrodes, or by using 
electromagnetic induction without direct contact with soil. These sensors, paired with global 
navigation satellite system technology, have become the most attainable techniques for on-the-
go mapping resulting from their rapid response, low cost and high durability. The main soil 
properties targeted with these sensors are soil texture (clay, sand and silt content), soil organic 
matter (SOM), moisture, salinity (Li et al., 2013), pH, cation exchange capacity (CEC) and soil 
depth variability (Mueller et al., 2003). Optical sensors use different portions of electromagnetic 
waves to detect the level of energy absorbed/reflected by soil. Electromagnetic radiation consists 
of vast range of wavelengths and frequencies, including gamma-ray, X-ray, ultraviolet, visible, 
near-infrared and mid-infrared, micro waves and radio waves. Ultraviolet/visible/infrared 
measurement techniques are based on diffuse reflectance (or atomic emission) spectroscopy and 
offer soil measurements that are rapid, relatively inexpensive, safe and non-invasive. Visible-near 
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infrared (vis-NIR) diffuse reflectance spectroscopy with a wavelength range of 350-2500 nm has 
gained a tremendous attention as it can simultaneously predict multiple soil properties with a 
single scan or data collection. Basically, one scans soil samples using Vis-NIR and develop 
mathematical models against laboratory measurements. These techniques have been used to 
measure soil organic matter/carbon (Viscarra Rossel et al., 2007; Viscarra Rossel et al., 2006; 
Shi et al., 2015), heavy metal contaminants (Kalnicky and Singhvi, 2001), soil clay (Viscarra 
Rossel et al., 2009) and sand content (Guillou et al., 2015), moisture (Mouazen et al., 2006), pH 
(Ji et al., 2014), nitrate or nitrogen content (Kuang & Mouazen, 2011), CEC and other properties.  
Delineation of MZs is the subdivision of fields into parts with similar soil conditions or properties 
with an intention of managing the zones similarly but differently from other zones (Peralta and 
Costa 2013). It can be defined as “a sub-region of a field that expresses a relatively homogeneous 
combination of yield-limiting factors for which a single rate of a specific crop input is appropriate”. 
MZ delineation entails thematic mapping of potential yield-limiting parameters and classifying 
them into subfields (Corwin and Lesch, 2010). The methodology varies in degree of complexity, 
but the fundamental procedure involves collection of one or more variables related to yield, 
thematic mapping of variables, chiefly employing geostatistical methods, and ultimately 
classification of one or more variables into zones using one of many various clustering algorithms 
or numerical techniques. However, there are a series of challenges in identifying MZs arising from 
complex correlation of underlying controlling factors, strong spatial variability of soil properties 
and nutrient concentrations (Peralta and Costa, 2013). Nonetheless, the inability to obtain soil 
characteristics rapidly and inexpensively remains one of the biggest limitations for MZ delineation 
(Adamchuk et al., 2004). While approaches such as intensive soil sampling, a time-consuming 
and costly (Shaner et al., 2008) approach limited to point measurements (Toy et al. 2010), are 
often not practical for high resolution measurements and thus identification of MZs. In contrast, 
proximal soil sensors can provide high resolution information on soil variability and shown 
potential for delineating MZs. Therefore, the objectives of this study were to 1) evaluate the 
capability of spectroscopy-based Veris P4000 proximal soil sensor in predicting soil properties 
from two commercial potato (Solanum tuberosum L.) fields from New Brunswick, Canada; and 2) 
use the spatial distribution of soil properties, sensor data and yield to delineate MZs for site-
specific management. 

2. Materials and methods  

2.1 Site description and soil sampling 
Two commercial potato fields were selected for this study from New Brunswick, Canada (Fig. 1). 
The fields are under intensive potato production. One field is 21 ha in size (Field1) and another is 
18 ha in size (Field2). Soils of Field1 are good to poorly drained, sandy loam to clay loam, and of 
glacial till origin and was classified as Holmesville (Orthic Ferro-Humic Podzol), Undine (Orthic 
Humo-Ferric Podzol), Johnville (Gleyed Humo-Ferric Podzol) and Siegas (Brunisolic Gray 
Luvisol) (Langmaid et al. 1980). Soils of Field2 were classified as Caribou (Podzolic Gray Luvisol) 
and Carleton (Orthic Humo-Ferric Podzol) soil series, which are moderately well drained, loam to 
silt loam, and of glacial till origin (Fahmy and Rees, 1996). Soil of both fields had a gravel content 
of about 15-35% and soil depth varied between 0.65 and 1.00 m (Milburn et al., 1989). The long-
term average annual precipitation of Field1 and Field2 are 1099 and 966 mm, respectively with 
mean growing season precipitation of 640 and 600 mm, respectively (Environment Canada, 
2016). 
A field sampling campaign was carried out in September 2015 following a triangular grid sampling 
design with a spacing of 33 m within the center 12 ha of the field and 71 m close to two long-end 
or the rest of the fields (Fig. 1). Composite surface soil samples from 0-15 cm depth were collected 
within 1.5 m radius of the sampling points pre-determined using ArcGIS. A total of 154 samples 
for Field1 and 141 samples from Field2 were collected using an auger and a series of soil 
physiochemical properties (moisture content, particle sizes (selected samples to a total of 41 and 
37 for Field1 and Field2, respectively), total carbon, total nitrogen, pH, P, K, Ca, Mg, Fe, Mn, Zn, 
Cu, and Al) were analyzed in laboratory following standard laboratory protocol.  
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Fig. 1: Study site showing two fields; a) Field1 and b) Field2 with sampling points for calibration 
and validation of predictive relationships for spectroscopic measurements. 

2.2 Field mapping using proximal soil sensors 
Both fields were intensively mapped using DUALEM21S (Dualem, Inc., Milton, Ontario, Canada) 
(Fig. 2) based on electromagnetic induction principle. Soils from selected locations were scanned 
using Veris P4000 (Veris P4000, Veris Technologies, Inc., Salina, Kansas, USA) multi-sensor 
platform based on spectroscopic principles. DUALEM21S was equipped with a real-time 
kinematic (RTK) AgGPS 542 global navigation satellite system (GNSS) receiver (Trimble 
RTK/PP-4700 GPS, Trimble Navigation Limited, Sunnyvale, CA, USA) to record precise location 
and the elevation. 
DUALEM21S has dual-geometry receivers at separations of 1- and 2-m from the transmitter 
providing simultaneous measurements of four (two with horizontal co-planar (HCP) and two with 
perpendicular (PRP) geometries) ECa soundings at different depths. The receiving coils provided 
information on HCP at 1 m (HCP1) and 2 m (HCP2) distances from the transmitter and PRP at 
1.1 m (PRP1) and 2.1 m (PRP2) distances from the transmitter. The effective sensing depth (75% 
response) of HCP1, HCP2, PRP1, and PRP2 were 1.55 m, 3.18 m, 0.54 m, and 1.03 m, 
respectively (Mat Su et al., 2009). The equipment was pulled by an all-terrain vehicle in parallel 
lines of about 10 m separation. The data from the DUALEM-21s and the Trimble RTK were logged 
using a custom DUALEM_DAQ logging software (Ji et al., 2017). 
Veris P4000 is a commercial multi-sensor platform and was used to collect vis-NIR reflectance 
spectra (350-2200 nm with 8 nm resolution) in laboratory (Fig. 2). Soil spectra in triplicate were 
collected for surface soil samples, processed and averaged before developing predictive 
relationship. Savitzky-Golay algorithm with a window size of 11 nm and a polynomial of order 2, 
and mean centering were applied to the raw spectra as pre-treatment before performing further 
analysis.   
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Fig. 2: a) Veris P4000 multi-sensor platform, b) DUALEM21S and c) RTK GPS with receiving 
station. 

2.4 Tuber yield data collection  
Yield data for Field1 were collected for 3 years (2013, 2014, and 2016) and Field2 for 2 years 
(2014 and 2016) using the RiteYield yield monitor system (Greentronics, Elmira, ON, Canada) 
attached to harvesters. Field1’s yield data were collected along a row width of 15 m (16 row 
harvester) and Field2’s yield data were collected along a row width of 11 m (12 row harvester). 
The harvesters were also equipped with RTK GPS systems (Trimble Navigation, Inc.) and the 
yield monitors were calibrated at the beginning of the season.  

2.3 Data analysis  
All the laboratory measured soil properties were interpolated using ordinary kriging in R computing 
language (R 3.3.3, R Development Core Team, 2017). Similarly, the yield monitor data as well as 
other proximal soil sensing data were also interpolated, and all the interpolated maps were 
harmonized in terms of spatial resolution (Fig. 3). In addition, proximal soil sensor as well as yield 
monitored data at the sampling points were extracted from the interpolated maps for developing 
prediction models. The spectral data were decomposed using principle component analysis 
(PCA) and the top 5 principle components (PCs) contributing more than 99.9% of the total 
variance were considered to develop predictive models. The correlation between and among soil 
properties, proximal soil sensors and yield were quantified using Pearson correlation coefficient. 
Additionally, to test the validity of spectroscopic data, the predictive capability of soil spectra for 
the lab measured properties were examined. Predictive models were developed for all soil 
properties in relation to average soil spectra of 0-15 cm using partial least square regression 
(PLSR) (Fig. 3). The accuracy of prediction was assessed based on root mean square error 
(RMSE) and coefficient of determination (R2). 
Spatial layers of soil properties were used to delineate MZs using an unsupervised Fuzzy 
classification algorithm. MZs were delineated individually for spatially interpolated soil properties, 
spatially interpolated layers of soil ECa measurement using DUALEM21S, spatially interpolated 
layers of 5 PCs derived from soil spectral measurements and spatially interpolated yield monitor 
data to compare the efficacy of using certain sensors compared to the yield response of the field 
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(Fig. 3). The MZs delineated using various methods were then compared with each other to 
examine the persistency in measurement (Fig. 3). The number of optimum MZs were decided 
based on two criteria; normalized classification entropy (NCE) and the fuzziness performance 
index (FPI). The NCE models the amount of disorganization created by dividing a data set into 
classes. The best classification is determined where NCE reaches a minimum. Similarly, the FPI 
models the amount of membership sharing that occurs between classes. Like the NCE, the best 
classification is determined where FPI reaches a minimum.  
 

 
Fig. 3. Outline of the steps of data analysis and MZ delineation 
Though all the analyses were performed for both fields, for the brevity of the paper, results form 
only one field is presented here as a case study. Therefore, all the results and discussion will be 
focused on one field; Field1 for the rest of the manuscript. 

Table 1: Descriptive statistics of soil properties for Field1 samples 
Soil properties Average Standard deviation Coefficient of Variation % Minimum Maximum 

pH 5.84 0.39 7 5.19 7.15 
Soil water % 24.4 4.00 16 14.0 36.5 

Total C mg kg–1 2.1 0.24 11 1.13 2.82 
Total N mg kg–1 0.2 0.02 12 0.11 0.37 

P mg kg–1 238.36 57.39 24 67.94 357.87 
K mg kg–1 183.27 43.35 24 104.84 335.6 

Ca mg kg–1 808.97 259.95 32 350.83 1693.02 
Mg mg kg–1 115.85 44.51 38 50.16 285.35 
Al mg kg–1 1813.95 111.63 6 1438.89 1999.02 

Cu mg kg–1 3.91 1.28 33 1.57 6.91 
Fe mg kg–1 316.46 51.43 16 176.19 478.68 
Zn mg kg–1 2.89 0.58 20 1.59 4.2 
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Mn mg kg–1 39.17 14.3 37 19.62 143.58 
Clay mg kg–1 151 25 16 119 210 

Silt mg kg–1 508 52 10 382 609 
Sand mg kg–1 341 73 22 190 483 

Gravel mg kg–1 237 67 28 73 411 
Elevation m 214.3 3.5 2 205.6 220.9 

Yield2013 Mg ha–1 40.5 10.4 26 6.5 70 
Yield2014 Mg ha–1 36.9 10.3 28 3 62.5 
Yield2016 Mg ha–1 34.2 7.3 21 15.7 55.9 

3. Results and discussion 

3.1 Spatial variability of soil properties and yield  

Soil properties varied within the field (Table 1). Almost all the soil properties except pH and Al 
exhibited coefficient of variation (CV) larger than 10%. CV as high as 38% was observed for Mg. 
A similar high variability was observed for Mn (37%), Cu (33%) and Ca (32%). Strong variability 
was also observed in soil particle sizes. Variability in the particle sizes may be attributed to the 
variability in soil classes as classified in earlier survey (Langmaid et al., 1980). A year-to-year 
variation in potato production was observed for the same field. In 2013, the tuber yield was 40.5 
Mg ha-1. However, a decreasing yield pattern was observed in 2014 (36.9 Mg ha-1) and in 2016 
(34.2 Mg ha-1). Year to year variation in climatic conditions might have contributed to the variability 
and the decreasing pattern in tuber yield. 

 
Fig. 4: Spatial distribution of yield (Mg ha-1) in a) 2013, b) 2014, and c) 2016, and the spatial 
distribution of d) soil moisture (%) and P (g kg-1).  
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The variability was also visible in the spatial distribution of soil properties (Fig. 4). For example, 
an increasing pattern of soil moisture was observed from southern part (~20%) to the norther part 
(~32%) of the field.  Similarly, variability in the spatial distribution of soil P was observed with the 
highest amount in the center part of the field and decreasing at the lowest level in the northern 
most part of the field.  Often, the center part of the field is used to initially store the manure before 
application and might have contributed to the higher amount of P. Similarly, a year-to-year 
variability in the spatial distribution of yield was also observed (Fig. 4) but with a consistent trend.  
For example, an area close to the northern part consistently exhibited lower yield than rest part 
of the field (Fig. 4). Though the trend in the spatial distribution in yield was not visible in the spatial 
distribution of majority of soil properties, a moderate linear correlation was observed between 
most of the soil properties and yield (discussed later).  

3.2 Spatial variability of sensor measurements 
A strong spatial variability in the proximal soil sensors measurements were also observed (Fig. 
5). For example, the first PC (contributing 83.8% of the total variance) of spectral measurements 
was highly variable throughout the field. As the variance contribution decreased, the spatial 
variability also decreased. However, a small point with high variability was observed at the 
northern corner of the field in PC3. Similarly, a stronger variability was also observed at the same 
location in the distribution of DUALEM21S measurements (Fig. 5). The pattern in the spatial 
distribution of soil ECa showed similar patterns as seen in the spatial distribution in tuber yield. 
Basically, high ECa values were attributed to the lower yield (Fig. 4a-c). Spatial similarity in the 
distribution of yield and DUALEM21S measurements were also visible in the correlation (Fig. 6). 
Spatial variability in the yield was visible neither in the spatial distribution of soil properties nor in 
the spatial distribution of soil spectral measurements (Fig. 6). 

 
Fig. 5. Spatial distribution of proximal soil sensor measurements. a-e) show spatial distribution of 
PC1-PC5, respectively with their variance contribution towards the total variance and f-i) show 
the spatial distribution of soil ECa measured using DUAMEM21S at 4 different depths.  
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3.3 Correlation between and among soil properties, sensor measurements and yield 
A variable correlation was observed among and between soil properties, proximal soil sensor data 
and yield (Fig. 6). For example, most of the soil properties were moderately correlated with yield 
particularly the yield of 2016 (Fig. 6). The correlation between soil properties and yield was 
observed in an increasing fashion from 2013 to 2016 except Fe, which showed a decreasing 
correlation. A strong negative correlation was observed between yields and DUALEM21S sensor 
data. This may be that the high salt concentration affected the yield negatively. A strong positive 
correlation between PC5 and the DUALEM21S sensor data were also observed. Similarly, a 
strong correlation was observed between DUALEM21S sensor data layers and majority of soil 
properties. For example, soil particle sizes showed strong correlation with DUALEM21S sensor 
layers. While clay and silt showed positive correlation, sand showed negative correlation with 
DUALEM21S sensor data. Higher surface area in smaller size particles (clay and silt) contributed 
to the higher exchange capacity and higher salt concentration in soil leading to positive 
correlation, while sand exhibited opposite relationship. 

 
Fig. 6: Correlation coefficients between and among soil properties, proximal soil sensors data 
layers, and yield. While the size of the circle indicates the strength of the correlation, the color 
indicates the type of relationship (positive and negative). 
Among the soil properties, soil particle sizes were highly correlated among each other. Similarly, 
a strong correlation was observed among the cations (Fig. 6). An obvious strong negative 
correlation was also observed between soil Al and Ca and Mg. A negative correlation between 
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DUALEM21S sensor data and Al may be attributed to the contribution of higher Al towards the 
acidity and unavailability of cations leading to lower cationic concentrations.  

3.4 Spectroscopic prediction of soil properties 
A predictive relationship was developed between lab-measured soil properties and average 
spectral signature of the top 0-15 cm layer using PLSR. Figure 6 shows the scatter plots between 
lab measured and spectral predicted soil properties. Majority of the soil properties exhibited good 
agreement between the lab measured and predicted soil properties. Calibration and validation R2 
values >0.50 are marked with ‘smiley’ faces in Fig. 7. Basically, clay, sand, total C, total N, water 
and buffer pH, P, Zn, Al and Ca had correlation >0.50 for both calibration and validation samples 
with as high as 0.80 for clay and Al and 0.83 for Ca in calibration samples. This showed that the 
spectroscopic techniques could be used to predict soil properties and could be used to fast 
characterize soil properties. 

 
Fig. 7: Spectroscopic prediction of soil properties. The red dots indicate the calibrations samples 
and blue dots indicate the validation samples. Slope, offset, RMSE and R2 for each prediction 
are indicated in each sub-figure. The parameters are; top row from left to right- clay, sand, silt, 
total C and moisture; 2nd row from left to right- water pH, buffer pH, total N, K, and P; 3rd row from 
left to right- Ca, Fe, Zn, Cu and Mg; bottom row- Al. Strong prediction for soil properties are 
marked with a smiley face �. 

3.5 Delineation of management zones 
MZs were delineated (Fig. 3) using a series of spatial distribution maps of soil properties, proximal 
soil sensors and yield maps. The optimum number of MZ were decided based on the minimum 
value of NCE and FPI. An optimum number of MZ were identified to be 3 when spatial distribution 
maps of all soil properties were used (Fig. 8). A clear demarcation of three zones; northern part, 
middle part and southern part of the field indicated operational feasibility. However, as the number 
of MZ were increased, the scatterness of the zones indicated difficulty in operation and 
management (Fig. 8).  
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Fig. 8: Management zones delineated using the spatial distribution maps of soil properties (bottom 
row). The optimum number of zones were identified based on minimum NCE and FPI value (top 
row). 
However, when the DUALEM21S sensor data layers were used to delineate MZs, 2 MZs were 
identified to be optimum (Fig. 9). A clear demarcation of the northern part of the field to the 
bottom/southern of the field represented the variability in the spatial distribution maps of sensor 
layers (Fig. 5). However, as the number of MZs were increased, the scatterness in the MZs visibly 
showed the difficulty in management. Similarly, 2 MZs were identified to be optimum using the 
spatial distribution maps of PCs of spectral measurements from Veris P4000 (Fig. 10). However, 
2 MZs identified using Veris P4000 data were not like the MZs identified from the DUALEM21s. 
Separation of sections of MZs clearly indicated the difficulty in variably managing the field. This 
became more problematic with the increase in the number of MZs with highly scattered sections 
of MZs throughout the field (Fig. 10), though the spatial variability in the PCs of spectral 
measurements was not that strong (Fig. 5). A same number of MZs (two) were also identified 
when using yield monitor data of three years (2013, 2014 and 2016) (Fig. 11). However, non-
coherent locations of MZs will make the management difficult compared to the MZs separated 
using DUALEM21S sensor. This clearly showed the superiority of using proximal soil sensors in 
delineating MZs that will be easy to manage. 

4. Conclusions   
This study examined the feasibility of proximal soil sensors for delineating management zones for 
site-specific management of potato, a high value crop. An electromagnetic induction based 
proximal soil sensor (DUALEM21S) and a spectroscopy-based proximal soil sensor (commercial 
multi-sensor platform Veris P4000) were used to map two commercial potato fields. Soil samples 
were also collected following a grid sampling strategy and measured in laboratory for a series of 
soil properties. The feasibility of predicting those soil properties using spectroscopy-based 
measurements were tested. A strong agreement was observed between most of the laboratory 
measured and spectral predicted soil properties showing potential for fast characterization of soil. 
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Fig. 9: Management zones delineated using the spatial distribution maps of DUALEM21S sensor 
data layers (bottom row). The optimum number of zones were identified based on minimum NCE 
and FPI value (top row). 

 
Fig. 10: Management zones delineated using the spatial distribution maps of principle 
components of spectral signatures collected using Veris P4000 (bottom row). The optimum 
number of zones were identified based on minimum NCE and FPI value (top row). 
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Fig. 11: Management zones delineated using the spatial distribution maps of yield from 2013, 
2014 and 2016 (bottom row). The optimum number of zones were identified based on minimum 
NCE and FPI value (top row). 
Further, the spatial distribution of soil properties measured in laboratory, spatial distribution of soil 
ECa measured using DUALEM21S, spatial distribution of principle components derived from 
spectral measurements and the spatial distribution of yield data were used to delineate MZs 
following a clustering algorithm. The number of zones were optimized based on two statistical 
criteria; normalized classification entropy and fuzziness performance index. While three MZs 
based on spatial distribution of soil properties were found to be optimum, two MZs were found to 
be optimum for all other data used. Among these, DUALEM21S provided a comprehensive and 
spatially co-located MZs, which showed improved feasibility for site-specific management over 
other methods. Spectroscopy-based proximal soil sensor showed potential in predicting soil 
properties, while the MZs delineated may not provide the best information and need further 
exploration. 
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