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Abstract. One of the limiting factors to characterize the soil spatial variability is the need for a 
dense soil sampling, which prevents the mapping due to the high demand of time and costs. A 
technique that minimizes the number of samples needed is the use of maps that have prior 
information on the spatial variability of the soil, allowing the identification of representative 
sampling points in the field. Management Zones (MZs), a sub-area delineated in the field, where 
there is relative homogeneity in yield potential, due to similar soil nutrients and environmental 
effects caused by similar landscape or soil conditions, has been widely accepted in management 
systems willing to apply precision agriculture techniques. MZs can be delineated using soil 
apparent electrical conductivity and local relief conditions variability, based on the clustering 
algorithm. Once the MZs relatively similar in terms of soil characteristics are created, there are no 
longer the need to take many soil samples to characterize the field. However, remains the 
question: where the best places are to take a limited number of soil samples within the MZ, where 
the mean value obtained from these samples represents the overall mean value of the attribute 
corresponding to the entire zone. This study aimed to evaluate a methodology to define the best 
locations for soil sampling to represent with a proper resolution of the physic-chemical soil 
variability. The best location for each soil sample was defined using the Fuzzy C-Means algorithm 
with some modifications. To evaluate the performance of the propose methodology, one field of 
93 ha of sugarcane, was used to delineate the management zones and select the best places for 
soil sampling. The results obtained using 1 sample per 3 hectares by a guided sample grid was 
compared with the regular soil sampling, which uses, approximately, 1.3 sample per hectare, 
evaluating the soil physic and chemical attributes. The results show that, with this approach, it is 
possible to create targeted sampling grids with high precision for specific nutrients management, 
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reducing costs and increasing the sustainability. 
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Introduction 
Soil fertility and crop spatial conditions mapping is one of the main procedures to ensure more 
sustainable production of sugarcane. Intrinsically related to Precision Agriculture (PA), this 
mapping consists in a detailed soil and yield sampling using modern equipment and techniques 
(Bullock et al., 2007). The basic principle is related to physical and chemical results of the 
laboratory analyzes with the geographical positions of the sample. Mapping soil spatial variability 
is essential for PA management and decision making to efficient agronomic practices to increase 
profitability of production. However, to ensure a precise mapping, a dense sampling is required; 
turn the activity sometime unfeasible. To overcome this challenge, several researches for soil 
sampling improvements have been made (Coelho et al., 2009; Machado et al., 2004), mainly due 
to answer the question of “what is the more suitable sample grid” to quantify the spatial variability 
of soil attributes. 
One solution to this impasse has been the generation of management zones, defined as a sub-
region of the field that presents a combination of limiting factors of productivity and soil attributes 
are considered similar (Tagarakis et al., 2013). Since each sub-region can be treated differently 
from the point of view of sampling and management, optimize the use of these resources can be 
more sustainable (Zhang et al., 2013). 
Despite the considerable number of researches indicating the feasibility of using MZs (Bazzi et 
al., 2015, 2013; Moral et al., 2010), the division of an area in MZs is not a simple task considering 
that several attributes may have influence on crop yield. Among the variables identified in the 
literature as potential to generate MZs are elevation (Bazzi et al., 2015; Farid et al., 2016; Peralta 
et al., 2013; Schenatto et al., 2016), soil electrical conductivity and soil texture (Farid et al., 2016). 
After delineation of the MZs, the number of samples needed to delineate the field soil variability 
can be reduced and may vary according to some landscape characteristics.  
Based on this context the aim of this study was to evaluate a methodology to define the best 
locations for soil sampling to represent with a proper resolution the physic-chemical soil variability 
within a management zone.  

Methodology 

Experimental field 
The experiment was carried out in a commercial sugarcane site located in Ipiranga Mill, São Paulo 
State, Brazil (47°44'11.29''W 21°49'04.10''S, Fig. 1). The climate in this region is tropical to 
subtropical, and the mean annual rainfall and temperature are 1560 mm and 22.9 °C, respectively. 
The soil is classified as a clayey Typic Hapludox, and the clay fraction is dominated by kaolinite 
and iron and aluminum oxyhydroxides.  
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Fig 1. Experimental Field. 

 

Soil data 
According to (Doerge, 1999), management zone creation should utilize stable data (i.e., static 
properties that do not change from year to year). For this study digital elevation and the soil 
apparent electrical conductivity (ECa) was used as layers for the management zones.  
ECa data were obtained at two soil depths (0.5 and 1.0 m) using EM38-MK2® (Geonics, 
Mississauga, Ontario, Canada) connected to a DGPS receiver (Ag142 ™, Trimble Navigation 
Ltd., Sunnyvale, CA, USA) and pulled by a quadricycle, since they have a good relationship with 
soil texture characteristics (Sudduth, et al., 2005) and have proven useful for delineation of 
management zones (Peralta and Costa, 2013; Moral et al., 2010). ECa was measured 
continuously, in every five rows interval, and later interpolated by kriging. 
The attributes clay content, organic matter (OM) and the cation exchange capacity (CEC) were 
assessed by a sample grid which was used to obtain the best places to collect the elevation and 
ECa samples. The clay, OM and CEC soil attributes have directly impacts into the spatial and 
temporal variability of sugarcane yield, and their sample grid was used to see how efficiently this 
sample grid could be to elevation and ECa too. For this study, only the soil surface layer data 
(0.00 to 0.20 m) were evaluated. 

Statistical and geostatistical analysis 
The ECa and soil attributes data were analyzed to remove discrepant values from laboratory 
errors and field readings. Any input value that deviated from the mean by more than three 
standard deviations (for a given attribute) was treated as an outlier. To obtain the spatial variability 
maps of the evaluated attributes in the guided soil sampling (1 sample 3 ha-1), the data were 
interpolated using ordinary kriging (OK). In the variogram setting, data interpolation was achieved 
by cross-validation to select the model (exponential, Gaussian or spherical) that best adapted the 
data and produced the smallest errors. Finally, we validated the results by soil samples from the 
original sampling grid (excluding the points used in the guided soil sampling). The predict values 
by OK were compared with the observed values. 

Clustering 
The SDUM (Software to Definition Management Units) (Bazzi et al., 2013) was used to create 
management zones via the Fuzzy C-Means method. To create the management zones, was used 
the digital elevation and ECa of two depths (0.5 and 1.0 m) data interpolated by OK with pixels in 
an area of 2 x 2 m and 10 neighbors. 
The interpolated data was inserted into SDUM as samples transformed to a grid of 50x50 pixels 
using the software ArcMap 9.3 (to decrease the number of lines of data). After this, the 
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management zones were generated with 2, 3, 4 and 5 classes, utilizing the Fuzzy C-Means 
algorithm selecting error parameter equal to 0.0001, and weight index equal to 1.3. 
To choose the properly number of management zones to represent the field was used the Fuzzy 
performance index – FPI (Equation 1, Fridgen et al., (2004) and Modified partition entropy index 
– MPE (Equation 2, Boydell and McBratney, (2002). 
where, c – number of clusters; 
n – sample size in the whole area 
(number of observations); 
ij u – element ij of the relevance 
Fuzzy matrix. 
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Selecting the best place to take soil samples 
To obtain the best locations for soil sampling, were implemented procedural functions with 
PL/pgSQL language at the PostgreSQL object-relational database management system, using 
the free spatial extension PostGIS. The functions implemented used the Fuzzy C-Means 
algorithm with some modifications, which minimizes the sum of squares of errors within each 
class following some criteria and the data are grouped iteratively to the nearest class using the 
minimum distance criterion. 
The best places were determined using the lower values of index FPI and MPE. For visualization 
of the results, was used the open source software Quantum GIS, which is a multiplatform 
geographic information system that allows visualization, editing and analysis of georeferenced 
data. 

Results and discussions 
The sampling grid used for soil data collection (clay, organic matter, and cation exchange 
capacity) has 119 sampling points, with a density of, approximately, 1.3 points ha-1 (Fig. 1). 

 
Fig 1. Sample grid used to collect clay, OM and CEC. 

From the sampling grid, the definition of management units defined by the attributes of elevation 
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and ECa measured in depth of 0.5 m and 1.0 m was applied. To obtain the non-sampled points, 
the data were interpolated using the geostatistical method of Ordinary Kriging. With the data 
interpolated, the area was divided into areas of management, using the definition of two, three, 
four, and five classes by the Fuzzy C-means method in the SDUM software. The best definition 
of the area in management zones was the division of two classes, which represented relative 
efficiency greater than 1 (Table 1), what is considered a valid division by the SDUM software 
statistics and which has the lower FPI and MPE indexes in relation to the other divisions (3, 4 and 
5 classes). These indexes were used to choose the best division, and how closer they are to 0, 
the better is the division of the area into management zones (Table 2). 
 
 
 

Table 1. Results of the Evaluation of Management Units of two classes through the software SDUM. 

Class % Field N° Samples Relative Efficiency 

1 

2 

0.45 

0.55 

1777 

2092 

1.023 

1.023 

Table 2. Result obtained from the division of the area into zones with two, three, four and five classes in the software 
SDUM. 

Division into Management Zones  FPI MPE 

Two classes 

Three classes 

Four classes 

Five classes 

0.1332 

0.1918 

0.2050 

0.2219 

0.0250 

0.0386 

0.0431 

0.0487 

It is possible to visualize that 45% of the area is about class 1 of the management zones and the 
others 55% of the area is about class 2. The relative efficiency value is 1.023 (greater than 1), 
Table 1. The division into two classes has better delimited classes, lower FPI values, and it has 
better definitions of classes that have possible sizes to do the localized management, lower MPE 
value, Table 2 and Fig. 3. 

 

 

Class 1 

Class 2 

 

Fig 3. Result of the best division of MZs (two classes), obtained through the software SDUM with the variables of elevation 
and electrical conductivity of the soil of 1.0 and 0.5 m. 

With the division of the area into two classes and the sample grid of 118 points, was applied the 
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algorithm to select the best points to be used as soil sampling grid as an oriented grid. The density 
used for the algorithm choose samples was 1 point per 3 hectares, which represents 14 points in 
class 1, and 17 points in class 2 (Fig. 4). 
 
 
 
 
 
 
 

Class 1 Class 2 

  

Fig 4. Selected points in brown (class 1) and in pink (class 2). 

 
The histograms of the soil attributes: clay, organic matter, cation exchange capacity, was used to 
verify the frequency obtained from sampling grid used (Figs. 5, 6 and 7) and to verify the frequency 
about the selected points by the algorithm obtained from the sample grid using the density of 1 
point 3 ha-1 (Figs. 8, 9 and 10). 
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Fig 5. Histogram of of Clay soil attribute using the sample grid with 1.3 points/ha density. 

 

 
Fig 6. Histogram of OM soil attribute using the sample grid with 1.3 points/ha density. 
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Fig 7. Histogram of CEC soil attribute using the sample grid with 1.3 points/ha density. 

 

 
Fig 8. Histogram of Clay soil attribute using the oriented grid by the algorithm with 1 point/3ha density. 
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Fig 9. Histogram of OM soil attribute using the oriented grid by the algorithm with 1 point/3ha density. 

 

 
Fig 10. Histogram of CEC soil attribute using the oriented grid by the algorithm with 1 point/3ha density. 
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Clay histogram (Figures 5 and 8), showed an asymmetry with two peaks, which means that it has 
two frequencies higher than the others, indicating that the data collected have very different 
conditions, being necessary the division into two classes to manage the area. The OM histograms 
(Figures 6 and 9) showed a symmetrical distribution with a good fit.  
In the CEC histogram (Figures 7 and 10), there are outliers, which are possibly data values that 
are very distant from the other data values. The distribution in the histogram has isolated bars at 
the left end of each, which identifies the outliers in both grids (original and oriented grid). 
Then, all the histograms for the sample grid (original grid) and oriented grid (grid obtained by the 
selection places algorithm) shows the similarity frequency distribution for each attribute analyzed, 
and with very close means values. This represents that the sample/original grid and the oriented 
grid has similar representation of the total area, and that the oriented grid is a good representation 
of the sample grid, which allows the manager to use less sample points to do the localized 
management for the clay, organic matter and cation exchange capacity attributes.  
The guided soil sampling was able to reflect the clay content variability in the experimental field 
(Fig. 11 - a) with high accuracy (R2 = 0.86). On the other hand, the guided sampling did not 
satisfactorily reflect the OM and CEC variability (Fig. 11 - b and c, respectively).  
The fact that the guided sampling was produced by the ECa and elevation attributes evidences 
the high correlation of these attributes with the clay content, as reported by (Moore et al., 1993). 
The variability of physical soil attributes is due to the slope changes that alter pedogenic 
processes, transport and storage of water in the soil profile (Sanchez et al., 2009), not occurring 
the same for OM and CEC.  
The results show that new landscape attributes should be used for a more precise sampling 
orientation to be able to reflect the chemical attributes of OM and CEC. The slope and landscape 
curvatures, like proposed by (Valeriano and Rossetti, 2012), can be a good option to use in soil 
sampling process. Even more, the ECa can be aid the interpolation methods, as an ancillary 
information, to obtain better results of the soil variability maps of OM and CEC, as showed by 
(Sanches et al., 2018).  
Despite the results not showed good predictions for OM and CEC, the landscape parameters are 
a source of information (economically feasible and easily assessed) with great potential to map 
the clay content variability and aid the site-specific management. 

   
(a) Clay Content (b) Organic Matter (c) Cation Exchange Capacity 

Figure 11. Observed and predicted values of the clay content (a), organic matter (b) and cation exchange capacity (c). 

Conclusion 
From the original soil sample grid, which reflected the clay content variability in the experimental 
field with high precision, the algorithm was applied to select the best locations to perform the soil 
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sampling of the elevation attributes and ECa, which are stable attributes and therefore were used 
to generate management zones, which were better delineated with two classes. 
By means of the original sample grid, the oriented grid was obtained and in an analysis of the 
frequency distribution, it was verified that although OM did not correlate with the attributes of 
elevation and ECa, we obtained symmetrical distributions between the guided/original grid and 
oriented grid. As the oriented grid was created with the elevation and ECa layers, it can be 
concluded through the frequency distributions that both in the guided and original grid sampling, 
better results can be obtained for a better total representation of the soil data if use more soil 
attributes. 
Thus, the oriented grid could be used to collect the elevation, ECa and clay data as well, because 
clay was strongly correlated with elevation and ECa. The OM-oriented grid did not have much 
discrepancy in relation to the original grid, although it correlated little with the attributes used to 
generate the oriented grid. 
Therefore, it is recommended to use more attributes for oriented grid generation to obtain better 
soil variability maps for OM and CEC. However, with the oriented grid it is possible to perform 
smaller soil samples and to obtain efficiency as good as the already used grid contributing to 
reduce costs and increase the sustainability. 
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