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Abstract 
Small-plot trials are the foundation of open-field agricultural research because they strike a balance 
between the control of an artificial environment and the realism of field-scale production. However, the 
size and scope of this research field is often limited by the ability to collect data, which is limited by access 
to labour. Remote sensing has long been investigated to allocate labour more efficiently, therefore enabling 
the rapid collection of data. Imagery collected by unmanned aerial vehicles (UAVs) are a significant 
development in remote sensing for agricultural research, and their potential for efficient workflows has 
generated interest from agricultural scientists. However, data analysis techniques have not matured at the 
same rate, and a knowledge gap exists between end users of the data and those who can manipulate, extract, 
and deliver it. This study was established to address the barrier to adoption of UAVs created by this 
knowledge gap. We created a tool that can semi-automatically extract plot-level statistics from UAV-
acquired imagery. This tool simplifies tasks that were previously accomplished via a Geographic 
Information System (GIS) by incorporating these tools into a web-based application, the Guelph Plot 
Analyzer (GPA). Users can upload a GeoTiff raster file to the application, and are presented with the UAV-
acquired map, as well as a variety of polygon drawing tools. Using a hierarchy of Trial to Replication to 
Plot, the user draws boundaries around each category, and the tool can then automatically populate a 
shapefile with polygons corresponding to the plots. Polygons can be buffered to remove border effects, and 
alleyways can be specified to correctly align rows. Once finalized, the user can export the overlay as a 
shapefile, as well as a spreadsheet containing image statistics, including the mean, median, range, and a 
histogram of pixel values. The plots are labelled according to the user’s specified naming convention, 
making the data easily transferrable to statistical analysis software, as well as seamless to integrate into 
existing studies. The plot extraction tool is an efficient means for non-remote sensing scientists to turn 
qualitative imagery into quantitative measures and will help modernize small-plot research as UAVs 
become more common. 
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Introduction  
While commercial agriculture remains the focus of precision agriculture (PA) methods, various tools are of 
equal value to improving and increasing the outputs of agricultural field research (Shi et al. 2016). 
Agricultural scientists use small-plot trials to test predictions of crop responses to genetic, agronomic, and 
physiological conditions in a representative environment. The ability to artificially replicate a field 
environment while controlling much of the underlying variability that could mask treatment effects makes 
small-plot research a fundamental tool. There is a compromise, however, between the size and scope of 
research projects and a researcher’s capacity to collect data while maintaining the experimental integrity of 
the trial and its associated observations. Many observations, such as those in phenotyping, are labour-
limited and necessitate either more assistants or smaller experiments (White et al. 2012). Remote sensing 
has long been investigated to allocate labour more efficiently, therefore enabling the rapid collection of data 
(White et al. 2012; Shi et al. 2016). The employment of unmanned aerial vehicles (UAVs) is a significant 
development in remote sensing for agricultural research, and their efficient workflow appears to be suitable 
for rapid data collection in multiple research applications. 

Although UAVs seem ideal for applications in PA, there is a relatively slow uptake of the technology in 
the industry (Zhang and Kovacs 2012; Freeman and Freeland 2015). The lack of availability of reliable 
estimates of return on investment from the analysis of remotely sensed images is a primary reason for their 
low adoption rate (Lambert et al. 2004). Additionally, several limitations of this technology include: the 
collection and delivery of images in a timely manner, lack of image processing and interpretation software, 
and the integration of remotely-sensed data with agronomic data into expert systems (Du et al. 2008).  There 
has yet to be a widely-accepted software tool developed for UAVs in small-plot research, and a knowledge 
gap exists between end users of the data and those who can manipulate, extract, and deliver it. The objective 
of this research was to develop a tool for plot-level data extraction that agricultural researchers can use 
independently from the labour of geospatial and programming experts. 

To this end, we have developed the Guelph Plot Analyzer (GPA) for the semi-automatic extraction of small-
plot research data from aerial imagery. The web-based application allows users to upload UAV-acquired 
data, and uses a semi-automated approach to segment the image into objects with the hierarchy of Trial to 
Replication to Plot. The application is compatible with raster images collected using various sensors (e.g. 
RGB, spectral indices, thermal, LiDAR), and with raster-interpolated point data, such as soil and yield 
maps. The GPA is capable of extracting data from tens to thousands of plots rapidly and accurately based 
on the GPS coordinates of the trial, and can label plot-level results according to common labelling 
conventions. The user can then generate a shape file for future use, and a Comma Separated Values (CSV) 
file containing some statistical information from each plot. This work also included focus group testing of 
this tool by several research groups from both industry and academia, which resulted in a unanimous 
conclusion that all participants would be eager to incorporate this product into their current research 
workflows. 

The employment of this tool is highly-efficient over the current state of the art, which requires graduate 
students or other personnel to walk the fields themselves and record their results using subjective qualitative 
measurements. The addition of this application to current research methods improves the speed at which 
these studies can be conducted, as well as the accuracy and objectivity of results. This tool enables the 
automation of large crop studies, as further developments that leverage computer vision techniques could 
include the calculation of several properties, including soil quality, plant coverage and emergence, and plant 
maturity.  
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The Guelph Plot Analyzer 
The GPA is hosted by the University of Guelph1,2. Once a user has logged into the application, they are 
presented with the view seen in Figure 1. The large blank area is the “canvas” where images are loaded and 
segmented. Uploaded image names are visible near the bottom-left hand side of the window, under the 
“Gallery” heading. Clicking on an image name in the Gallery loads the image onto the Canvas, as seen in 

                                                
 
1 https://www.uoguelph.ca/engineering/GPA 
2 Video tutorials for the application are available at https://www.youtube.com/watch?v=4turPrgZoII 
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Figure 2.  

Fig. 1 – View of the University of the Guelph Plot Analyzer after login. 

Fig. 2 – View of Selected image loaded from the “Gallery” (visible at the bottom-left hand side of the application).  

Initializing the Trial 
The first step of segmentation requires the precise positioning of a Trial. Inserting and positioning an 
“Anchor” creates a snap point and rotation fulcrum for object (Trials, Replicates (Reps), and Plots) corners 
that have been snapped to it. An example of an Anchor and a Trial are shown in Figure 3. The Trial’s top-
left corner is snapped to the Anchor and can rotate around that point. 

Auto-Fill for Reps and Plots 
Once a Trial is positioned correctly, it is populated by Reps through the auto-fill functionality. Figure 4 
shows four Reps that populated the initialized Trial, labelled as 100, 200, 300, and 400. There are two 
methods for performing auto-fill: Free-Hand and Set-Number. These methods are used for creating both 
the Rep and Plot objects, where Reps are created inside of Trials, and Plots are created inside of Reps. 
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In Free-Hand auto-fill, the user can manually draw a Rep within a Trial, and the auto-fill functionality will 
automatically populate the rest of the Reps in the Trial based on the size of the Rep that was initially drawn, 
as well as the specified alley width (located in the Parameters side-bar). 

In Set-Number auto-fill, the user can specify the number of “Children” in which to populate an object, as 
highlighted in Figure 4. For example, when drawing Reps, the Reps are the Children of the Trial (Parent), 
and similarly, Plots are the Children of Reps. To create these objects, the user selects the number of Children 
that go across and down the dimensions of the Parent object, as well as the alley widths between these 
objects. 

Once the Reps have been drawn, the same procedure can be used to create Plots. However, when using 
auto-fill to populate Plot objects, a buffer parameter can also be specified in the Parameter side-bar, as 
shown in Figure 5. By specifying this buffer, the central area of each plot is isolated, and this region-of-
interest that is used for data extraction (area shown as green in Figure 5). The information located around 
the edges of each Plot is excluded (shown as white), reducing the noise in the extracted data. 

In both cases of auto-fill, the user can specify the numbering convention for Reps and Plots (first entry in 
the Parameters side-bar). By allowing the user to specify the numbering convention, the GPA can output 
results that are labelled in a way that is similar to a researcher’s existing experiment design. Furthermore, 
users are not constrained to a rectangle-based case, as has been used as an example here. Additional Trials, 
Reps, and Plots can be drawn and customized, depending on the shape of the area of study. These objects 
can also have their numerical-based labels edited individually, making the labelled results compatible with 
nearly any study. 

Fig. 3 – Anchor Snap-point (inverted blue triangle) and positioned Trial. 

 



 
Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada  Page 8 

 

Fig. 4 – View after Rep auto-fill was performed for Trial. Set-Number auto-fill parameters are highlighted in the user menu. 

Fig. 5 – View after Plot auto-fill was performed. Each Rep has labelled plots. Plots have 1m buffers (white area) surrounding the area of 
interest (green). 
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Exporting Data 
When segmentation is complete, the user can select the “Export” button, located in the top-right corner of 
the application. This immediately downloads a shapefile, which is compatible for use in Geographic 
Information System (GIS) software packages (for example, ArcGIS3). Figure 6 shows a typical visualization 
of a shapefile. A loading screen will appear and remain until the statistics CSV file has been prepared. The 
CSV contains plot-level data statistics, including mean, minimum, maximum, and a histogram of the 
intensity distribution of each plot. This information can easily be imported and analyzed by existing 
statistical software (e.g. SPSS), or imported by general-purpose programming languages (e.g. Matlab, 

Python). 
Fig. 6 – Preview of polygons from the shapefile of the segmented Trial from Fig. 4 and 5. 

Focus Group Evaluation 
A focus group-based evaluation of the application was conducted with research groups from both industry 
and academia, via remote and on-site studies, to accurately assess the usability of the program, as well as 
the effectiveness of the video tutorials. Through both venues of evaluation, the participants noted no 
complaints regarding the usability of the program. In fact, most users were enthusiastic about how quickly 
and accurately the program could extract plot data, and expressed the desire to apply this to their own 
research workflows. Participants commented on how the employment of this tool could decrease the length 
of time required to conduct a study, as well as increasing the objectivity of measurements. The potential 
reduction of visual ratings, which require strict protocols to reduce bias and require significant labour to 
complete, was the primary motivator among participants. 

Additionally, participants suggested a variety of options for more sophisticated data analysis, including 
analysis of colour content to determine crop maturity, plant coverage, and emergence, as well as the study 
of spectrometry data from remote sensing.  

Discussion 
The GPA is a step towards closing the knowledge gap that restricts the use of UAV imagery in high-volume 
research workflows. The main priority of this work was the extraction of plot-level data from imagery such 
that it could be readily compatible with statistical software. Like Shi et al. (2016), an interdisciplinary team 
of agricultural researchers, computer engineers, and geospatial experts collaborated to ensure a mutual 
understanding of the needs of the end user and the capabilities of current technology. The objective of the 

                                                
 
3 https://www.arcgis.com 
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GPA is to enable researchers to extract data without relying on the labour and advice of geospatial and 
computer programming experts. Any intermediate handling of imagery prior to delivery of the data 
eliminates the benefits of UAV imagery to researchers by replacing existing labour with that of a third-
party. Because of the diverse interests and backgrounds of the collaborating team, the potential for 
miscommunication and delay of data delivery during transition is high. By collaborating from the 
beginning, and defining the end users and their needs, we eliminated this source of error by guaranteeing 
that the tool conforms to the conventions of both geospatial and agricultural work.  

The GPA was successful in achieving this objective, based on the results of focus group evaluations. Groups 
involved included agricultural researchers with familiarities with remote sensing and GIS ranging from 
none to cursory, in order to demonstrate ease-of-use. Rapid turnaround of plot-level data was of critical 
importance, and groups unanimously concluded that the GPA could be seamlessly incorporated into their 
projects. Groups noted that the GPA has limited functionality, but that it addresses the first step in data 
extraction, which is the digitization of plots in a simple and efficient manner. The use of more sophisticated 
analytics involving computer vision still require expertise in the realm of geospatial data analysis, but such 
functionality could be easily integrated with the GPA, owing to its modular and extensible design. These 
additions must maintain the simplicity of user interactions with the interface and be automated to the 
greatest extent possible, making minimal expectations with respect to the end user’s technical expertise. 

Developing robust and accurate methods for image analysis is important for exploiting the image data that 
can be rapidly collected by UAVs. Some methods already exist, and have been applied to the tasks of 
detecting stand loss and maize defoliation (Erickson et al. 2004), detecting crop biomass and nitrogen status 
(Hunt et al. 2005) and predicting soil organic carbon (Gomez, Viscarra Rossel, and McBratney 2008). Shi 
et al. (2016) integrated UAVs into a high-throughput phenotyping workflow through an interdisciplinary 
network of experts. Most of these applications require automation of specialized image processing methods 
so that results can be computed in a reasonable amount of time (Hardin and Jensen 2011). Ideally, the GPA 
will eventually contain the functionality to compute these same measurements within the same interface. 

To improve the functionality of the GPA, future development requires integration of computer vision 
algorithms, and the ability to import a diverse range of file types. While basic statistics of raster images are 
useful for correlations to other whole-plot averages, such as yield, more complex measures at the sub-plot 
level, such as weed coverage or plant count, require more sophisticated processing prior to data extraction. 
These analytics could be built into the backend of the GPA to avoid exposing the end users to technicalities 
that fall outside their area of expertise. 

Conclusion 
This project yielded an accurate, efficient, and robust plot extraction application for remote sensing of 
small-plot research trials. Focus group testing demonstrated that the program was straightforward and easy 
to use for participants across different research projects, both from industry and academia. Additionally, 
participants were eager to implement this program in their current workflows to decrease the length of time 
to conduct a study, as well as to increase the objectivity of measurements.  

In summary, the GPA is a cloud-based software that can automatically extract plot data from aerial imagery, 
as this service does not yet exist. The program was developed such that it is: 

• Web-based; 
• Compatible with shapefiles, aerial imagery collected using a variety of sensors (e.g. RGB, spectral 

indices, thermal, LiDAR, etc.), soil, and yield maps; 
• Compatible with planting and numbering conventions used in the majority of all agronomic and 

breeding trials; 
• Capable of extracting data from hundreds of plots quickly (in a matter of minutes) and accurately; 

and 
• Able to produce a histogram summarizing the distribution of information in a plot (e.g. mean, 

variance, quartiles, etc.). 
This application appears to have great market potential, considering the extensive number of agricultural 
field plots in Ontario, as well as the increasing prevalence of remote sensing technologies in PA.   
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