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Abstract. For the planning of site-specific nitrogen fertilization, adequate decision rules are 
needed. Prerequisite for site specific nitrogen fertilization is the site specific forecast of yield. For 
this the use of artificial neural networks (ANN) has proven particularly interesting. Therefore, ANN 
based small-scale yield forecasts are realized in order to deviate the economic optimum of 
fertilization. The basis of yield forecasts with ANN are different site-specific input variables that 
have presumable impact on yield expectation. These input variables for instance could be 
recorded yield, electrical conductivity, relief (e.g. topographic wetness index (TWI)), draft force 
resistance, vegetation indices like red edge inflection point (REIP), previous fertilizer applications 
and so on. In many years the economic advantage of using ANN for nitrogen fertilization is 
approved. The results are largely promising, but not sustainable in every case. The data survey 
for the training set underlies natural disturbance. So the accuracy of small-scale yield forecasts 
varies considerably from year to year. Also direct impact like unreliable yield or electric 
conductivity recording influences the quality of input data. To improve the quality of results, it may 
be necessary to manipulate existing input and target variables. It has to be tested whether a 
classification of the input and target variables, in comparison to the metric scaled input and target 
variables, offer improvement in accuracy. Therefore, different classification systems are 
examined in this study. Equal intervals as a classical scheme are tested at first by varying the 
width of intervals. A further focus lies on quantile classification and at least on a standard deviation 
classification scheme. Initial studies implementing ANN with focus on soil parameters actually 
show positive effects, regarding to classification. The paper provides information on the extent to 
which improvements in the small-scale yield forecast results occur and whether the results found 
can be generalized. The results found in this paper are essential for further work with ANN in site-
specific nitrogen application.  
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Introduction 
Precision farming includes a wide range of technology targeting a more precise agricultural 

production. These technologies have different acceptance in agricultural practice. While adoption 
rates of seed genetics and precision steering have exceeded 50 percent in several geographic 
markets, grower adoption of site-specific seed and fertilizer management continues to lag behind. 
As O’CONNOR (2018) describes, the reasons are quiet simple: Genetically improvements or 
precise steering technology have more visible and compelling value. Also WEIGERT (2006) 
elucidated a constant increase of installed systems for yield mapping, but only a weak 
implementation in the management process. The assumption is that farmers could not achieve 
economic benefits from this technology.  

In the economic year 2015/2016 1,44 billion euros were spent on nitrogen (N) fertilizers only 
in Germany. Expenditures on potash came on second place with only 268 million €, followed by 
phosphate fertilizers with 252 million € and lime with 245 million € (STATISTISCHES 
BUNDESAMT, n.d.). Thus nitrogen accounts by far for most of the fertilizer expenses in German 
agriculture. Further the thematic is not only relevant from an economic standpoint, but also in 
questions of environmental impact. According to data of the FAO (2017) worldwide fertilizer 
application will steadily grow in the next years. O’CONNOR (2018) mentioned that oxygen 
depletion triggered by excessive nitrogen and phosphorus levels, primarily caused by fertilizer 
runoff, is becoming a serious problem in several major waterways. “The U.S. National Academy 
of Engineering has listed “Managing the Nitrogen Cycle” as one of its 14 grand engineering 
challenges for de 21st century”, so O’CONNOR (2018). Politicians in the European Union and 
Germany recognized the problem and reacted with stricter laws. In 2017 the new German 
ordinance of fertilization was realized and pretend a legal limit for fertilization (DÜV, 2017). This 
is a third point why farmers are forced to use their resources even more sparingly and efficiently 
in the future.  

Site-specific management generates enormous amounts of very cost-efficient data. In a sense 
that farmers could benefit from these data, the application of data mining techniques in precision 
agriculture could prove to be a viable tool. WAGNER (2012) proves in many field trials between 
2005 and 2011, that the application of data-mining techniques (especially ANN) for site-specific 
nitrogen fertilization in average reveals a positive result of 22,26 €/ha in comparison to a uniform 
treatment variant. Although these models are promising they are not applicable consistently. The 
replication of models with variables from other fields was not possible in every case. There are 
many assumptions which could explain these circumstance. At first measuring soil parameters, 
e.g. electrical conductivity or electrical resistance depends heavily on water saturation of soils. 
So not in every year and not on every field a reliable dataset could be produced. Weather 
conditions are the second important factor which influence the accuracy of models. Particularly 
the historical yield has proven as a good predictor variable. But large yield fluctuations from year 
to year show different results in prediction accuracy. There are furthermore influence factors, for 
example the circumstance that plant growth is a dynamic biological process, which has intrinsic 
balancing abilities in order to plant nutrition.  

For generating adequate decision rules for nitrogen fertilization, no model with hundred percent 
accuracy is necessary, because at least natural disturbance factors and intrinsic biological 
abilities are definitely not possible to predict. So the question is how to generate a sufficient 
accurate decision model, that is stable over years and possibly later across regions. The first step 
of building a model is the preparation of the data in use. In previous models metric scaled, 
absolute numbers were used. To improve the quality of results, it may be necessary to manipulate 
existing input and target variables. It has to be tested whether a classification of the input and 
target variables, in comparison to the metric scaled input and target variables, offer improvement 
in accuracy. Therefore, different classification systems are examined in this study. This initial 
information on the extent to which improvements in the small-scale yield forecast results occur 
and whether the results found can be generalized.  
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Materials and Methods 
Field location and trial design 

The data used in this study was collected from a 65 ha field which hosts a long-term field trial 
which started in 2003. The field is part of the “experimental farm Görzig” of the Martin-Luther-
Universität Halle-Wittenberg. The field which is numbered as 550, is located near Görzig in 
Sachsen-Anhalt (Germany). The average precipitation of 475 mm per year, frequently leads to a 
negative water balance in the growing season. The average annual temperature is 9 °C. The flat 
terrain lies between 90 and 100 meters above sea level. The predominant soil type is Chernozem 
and the texture class is silt loam. In general, the field trial is designed for a long-term basic 
fertilization trial. Therefore, the field is divided into a 36 x 36 meters’ grid, which is adapted on the 
technical equipment of the farm. All variables which are used in this study are fitted and averaged 
on the grid cell scheme. Figure 1 depicts the yield of winter wheat of field 550 in 2015. The yield 
varied between 26 and 131 decitonnes (dt) per hectare (ha) with an average of 86 dt/ha.  

 
Figure 1: Trial design of field 550 combined with the yield map of winter wheat 2015 

Database 
The grids in the outer boundary zone of the field (36m) are not included in the dataset. Many 

confounding factors, e.g. soil compaction, overlapping of farming activities or incomplete yield 
recording disturbs the acquisition of a reliable dataset in this zone. So in total 448 grid cells are 
included in the analysis which results at least in 58 ha of trial area. Several measurements were 
carried out between 2003 and 2015. The variables which are used as predictors for ANN 
modelling are shown in table 1 (next side). In some years no yield record was possible. So in total 
there are 8 years of historical yield data which can be used for the prediction of the yield of 2015. 
The electrical conductivity was measured in three years which are all included. The descriptive 
statistics for each variable used in this paper shows figure 3 in the appendix.   
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Table 1: Variables used for yield prediction with ANNs  

Variable Labeling Crop Input form Year 

Historical yield 

YdtKM2003 Corn Absolute & relative1 2003 
YdtWW2004 Winter wheat Absolute & relative 2004 
YdtWW2007 Winter wheat Absolute & relative 2007 
YdtWW2010 Winter wheat Absolute & relative 2010 
YdtWR2011 Winter rape Absolute & relative 2011 
YdtWW2012 Winter wheat Absolute & relative 2012 
YdtWG2013 Winter barley Absolute & relative 2013 
YdtWR2014 Winter rape Absolute & relative 2014 
YdtWW2015 Winter wheat Absolute & relative 2015 

Electrical conductivity 
EC03 - Absolute 2003 
EC09 - Absolute 2009 
EC15 - Absolute 2015 

Electrical resistance Avg_Rho_1, 2, 3, 4, 5, 6 & 1-6 - Absolute 2017 
Mass balance index MBI - Absolute - 

Topographical wetness index TWI - Absolute - 
Clay content Ton - Absolute - 
Silt content Schluff - Absolute - 

Sand content Sand - Absolute - 
Fine content Feinanteil - Absolute - 

1 The average yield of a grid cell is also included as a relative value to the average yield of the field. 

Yield prediction with ANNs 
Artificial neural networks try to mimic the way a human brain works and they try to “learn” how 

to classify data using knowledge embedded in training sets. Neural network describes a set of 
virtual neurons connected by weighted links. Each neuron performs easy tasks, but the network 
can perform complex tasks when all its neurons work together. “Commonly, the neurons in 
networks are organized in layers, and these kinds of networks are referred to as multilayer 
perceptrons. Such networks are composed by layers of neurons: the input layer, one or more 
“hidden” layers and finally the output layer. A training set is used for setting the network 
parameters so that a predetermined output is obtained when a certain input signal is provided. 
The hope is that the network is able to generalize from the samples in the training set and to 
provide good classification accuracy” (MUCHERINO et. al., 2009). 

There exists much literature about how to use data mining technologies and how to interpret 
the results. For instance, MUCHERINO et. al. (2009) and WEIGERT (2006) give good examples 
for possible applications of ANNs in agriculture. But all authors are unison that for every issue, 
respectively optimization problem at least, it has to be tested whether and how a positive result is 
reachable. A standard solution for application is not available yet.  

For developing ANN models for yield prediction, in this study the software SPSS Modeler® 
from IBM (version 17.1) is used. All combinations of ANN models are based on the multi-layer-
perceptron algorithm. For every training cycle 30 % of the dataset was separated for validation to 
prevent overfitting. The software is adjusted to calculate the best network topology automatically. 
So for every single combination the seemingly best network topology is computed. As target 
variable always the yield of winter wheat in 2015 (YdtWW2015) is used.  
Model combinations 

In this study three combinations of models with classified variables are tested in comparison 
to a model with only metric scaled variables (standard model). The following table 2 shows the 
possible combinations of input and target variables with its abbreviations.  
Table 2: Combination of Input and Target variables in the tested ANNs. 

Input variable Target variable Abbreviation 
Metric Metric ImTm 

Classified Metric IcTm 
Metric Classified ImTc 

Classified Classified IcTc 
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Classification types 
There are many possibilities to classify a dataset. In this study the allegedly most important 

are applied. The used classification types are depicted in table 3. At first intervals are set to a fix 
number of equal classes. Therefore, the number of classes is varied in two-staged intervals from 
6 to 12. The second type used in this paper is a classification scheme based on standard 
deviation. For this the mean value is calculated and then class breaks are placed above and 
below the mean at intervals of either 1, 2 or 3 standard deviations. The third method used is the 
quantile classification. Quantile classification assigns the same number of data values to each 
class. There are no empty classes or classes with too few or too many values. Each class contains 
an equal number of predictors, for example 20 % of the data in each group in a quintile 
classification. For detailed information see the IBM User’s Guide (n.d.). 
Table 3: Classification types, number of classes and its abbreviations 

Classification type Number of classes Abbreviation 

Equal intervals 

12 EI 12 
10 EI 10 
8 EI 8 
6 EI 6 

Standard deviation 
3 SD 1 
5 SD 2 
7 SD 3 

Quintile  5 Quintile 
Decile 10 Decile 

Results and Discussion 
The results of the model with metric scaled input and target variables (ImTm) are shown in 

table 4. With a coefficient of determination (R²) of nearly 82 % respectively a linear correlation (r) 
of 0,9 the model has a pretty high yield prediction accuracy in comparison to ANNs trained for 
other yield-years. According to a nitrogen efficiency of 20,4 kg N/t yield, for winter wheat in this 
region with an ANN approach (between 2005 and 2011 on 15 field trials - for details look at results 
of WAGNER (2012)), the standard deviation (SD) of 6 dt/ha is acceptable. This means that a 
fertilization recommendation leads to an over- or undersupply of a bit beyond 12 kg N/ha. For 
agricultural practice this is absolutely satisfactory. But there are outliers which could not be 
predicted optimal. In the sample the maximum error of nearly 22 dt/ha and the minimum error of 
over -24 dt/ha would lead in extreme cases to an over- or undersupply of round about 45 kg N/ha 
respectively -50 kg N/ha. On a small-scale basis this is too inaccurate. The average absolute error 
is also pretty good with 4,72 dt/ha in comparison to other models in other years. n indicates the 
total number of observations respectively cases which are computed in the model.  
Table 4: Statistical summary for the “ImTm” ANN model 

 
 
Figure 2 (next side) illustrates the ANN output of the “ImTm” model according to the total 

number of accurate prediction values. As one can see, ANNs operate with an intrinsic 
classification scheme. Therefore, little value groups (bins) are created to compare afterwards the 
accuracy of observed and predicted values.  

Input data R² SD r Min. error Max. error Avg. error Avg. abs. error n 
metric 81,6 6,08 0,90 -24,28 21,90 -0,22 4,72 448 
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Figure 2: Matching of predicted to observed value groups in total count 

The first model with classified input variables and metric target variables (IcTm) is depicted in 
table 5. The highest accuracy is reached by the classification types EI 12, EI 6 and decile. With 
values from 82 to 85 % they perform slightly better than the pure metric model “ImTm”. The SD 
and average absolute error could be clearly improved in the case of EI 12 and decile classification. 
All other models are definitely worse than “ImTm”.  
Table 5: Statistical summary for the “IcTm” model 

Classification type R² SD r Min. error Max. error Avg. error Avg. abs. error n 
EI 12 85 5,39 0,92 -24,12 20,75 0,49 3,95 448 
EI 10 75 7,04 0,86 -26,40 22,45 -0,17 5,26 448 
EI 8 67 7,99 0,82 -28,36 25,06 -0,14 6,09 448 
EI 6 82 6,02 0,91 -25,43 24,42 0,00 4,52 448 
SD 1 76 7,00 0,87 -24,65 20,35 0,15 5,37 448 
SD 2 70 7,77 0,84 -25,00 28,25 0,05 6,05 448 
SD 3 73 7,32 0,86 -26,56 24,23 -0,44 5,68 448 

Quintile 63 8,65 0,79 -39,80 21,74 -0,13 6,55 448 
Decile 84 5,64 0,92 -26,67 19,21 0,62 4,18 448 

The next model is based on classification of input and target variables. Table 6 shows the 
statistical summary. Now all classification types show worse results except the standard deviation 
classification. With a steadily rising coefficient of determination from 82 (SD 3) to 89 % (SD 1) the 
model looks even better than in a metric based form. But there are some limitations according to 
SD 1. In this case the model only predicts a low yield (below -1 SD), average yield (-1 to +1 SD) 
and a high yield (over +1 SD). This means a classification of only 3 classes which is logically 
easier to predict. The more classes the model has, the worse it performs. There is a gradient from 
SD 1 to SD 3. But even with 7 classes (SD 3) the model seems to perform sufficient accurate in 
comparison to “ImTm”. 
Table 6: Statistical summary for the “IcTc” model 

Classification type R² Correct n False n Correct % False % n 
EI 12 55 246 202 55 45 448 
EI 10 53 237 211 53 47 448 
EI 8 61 270 178 61 40 448 
EI 6 66 295 153 66 34 448 
SD 1 89 398 50 89 11 448 
SD 2 88 396 52 88 12 448 
SD 3 82 369 79 82 18 448 

Quintile 64 287 161 64 36 448 
Decile 43 192 256 43 57 448 

Observed value (YdtWW2015) 
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The last model is tested with metric input and classified target variables (ImTc). The results 
here are similar to the model above. The SD method performs sufficient accurate and even better 
than in “IcTc” with an R² of 89 % (SD 3) up to 95 % (SD 1). Also here the SD 1 is less interesting 
than the SD 3 classification model.  
Table 7: Statistical summary for the “ImTc” model 

Classification type R² Correct n False n Correct % False % n 
EI 12 55 246 202 55 45 448 
EI 10 57 256 192 57 43 448 
EI 8 61 273 175 61 39 448 
EI 6 75 335 113 75 25 448 
SD 1 95 426 22 95 5 448 
SD 2 90 401 47 90 10 448 
SD 3 89 400 48 89 11 448 

Quintile 61 273 175 61 39 448 
Decile 42 190 258 42 58 448 

Conclusion 
The attempt to reach better accuracy in yield prediction with ANNs, via classified input and/or 

target variables, is basically interesting and showed positive results in this work. Therefore, in this 
study three combinations of ANNs with three different classification types in nine variations are 
tested. The model with metric scaled input and target variables, as a standard model, is compared 
to the other combinations of models. The main focus lies on the accuracy of a model, which is 
expressed through the coefficient of determination. 

The results are largely promising in some cases. So the model “IcTm” with the classification 
type EI 12, EI 6 and decile classification, showed a slightly better accuracy than the standard 
version. Also standard deviation and the average absolute error could be visibly improved. The 
model with classified input and target variables showed a very different result: Except from the 
standard deviation classification type, all classification types performed worse than the standard 
model. The R² of SD 3 with 82 % could be improved up to 89 % in the case of SD 1. But the 
limitations of a three class scheme like SD 1 must be considered. The range of one standard 
deviation means a yield span from over 1,2 tons in this case. According to a nitrogen efficiency of 
20,4 kg N/t yield, only the middle class around the mean value could be fertilized acceptable (~12 
kg N/ha over- or undersupply). But the question is how accurate the lower and upper class could 
be addressed under these circumstances. The last model with metric input and classified target 
variables showed similar results compared to the previous mentioned model. Only the models 
with standard deviation classification schemes performed sufficiently. The accuracy in this model 
is even better with an R² of 89 % (SD 3) up to 95 % (SD 1).  

To sum up, it has shown that classification schemes can improve the results of ANN models 
for yield prediction. To give a final summary of findings in this paper: 

• Classification of input variables leads to a better performance of models with a higher 
number of classes (in this case 12 classes in equal weight and decile classification) 

• Classification of input and target variables leads to a good performance of standard 
deviation classification schemes. All other models perform worse.  

• The best accuracy was reached by classifying only the target variable. Here also 
standard deviation schemes are unrivaled.  

• Looking at standard deviation classification, schemes with a higher number of classes 
(SD 3) should be preferred to guarantee a higher accuracy in high and low yield zones.  

This paper was developed to give a first overview of how ANNs for yield prediction react on 
different classification methods. Further aspects have to be integrated, like the usage of data from 
other fields and other years or even other variables. Further it has to be tested how accurate the 
models perform in a field application. At least, for generalizing the mentioned results, further 
research is necessary.  
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Appendix  

Figure 3: Descriptive statistics of variables in use 


