

ADAPT:	A	Rosetta	Stone	for	Agricultural	Data	
B. Craker1, D.D. Danford2, R.A. Ferreyra3,*, K. Nelson4, S.T. Rhea3, M.W. Stelford5, J.A. Wilson6
1 Ag Data Coalition (Springfield, OH, USA); 2 CNH Industrial (Burr Ridge, IL, USA); 3 Ag Connections, LLC (Murray,
KY, USA); 4 Farmbelt North, Inc. (Minneapolis, MN, USA); 5 Premier Crop Systems, LLC (Des Moines, IA, USA);
6 AgGateway (Washington DC, USA)

Modern farming requires increasing amounts of data exchange among hardware and software systems. Precision
agriculture technologies were meant to enable growers to have information at their fingertips to keep accurate
farm records (and calculate production costs), improve decision-making and promote efficiencies in crop
management, enable greater traceability, and so forth. The attainment of these goals has been limited by the
plethora of proprietary, incompatible data formats among equipment manufactures and farm management
information systems (FMIS), along with a lack of common semantics (meaning) in the industry. Proposed partial
solutions exist; e.g., the ISO11783.10 standard XML format is well-known and respected, but it is machinery-
specific and does not include business-process details needed by growers’ FMIS.

AgGateway is an industry consortium of 200+ companies in the agricultural industry. In 2013-14, its
SPADE project explored the feasibility of the industry developing an open-source format conversion
toolkit. This experience led to what is now its ADAPT Committee.

The ADAPT team created a common object model or "Application Data Model" (ADM), a super-set of
field operations data models presented by participating companies. The goal: to replace the current, fragile
situation, where FMIS must support multiple hardware data formats, and each machinery manufacturer has
to interact with multiple software companies, with a single ADM integration mediated by a framework
(currently built on .NET Framework 4.5.1 / .NET Core 2.x; ADAPT can run on Windows, Mac or Linux)
from which manufacturer-specific plug-ins convert to and from proprietary formats. This enables the FMIS
to read/write to a wide variety of systems with little incremental effort, using ADAPT as a form of a digital
agriculture Rosetta Stone. A special emphasis was placed on developing a data-driven approach to
managing geopolitical-context-dependent information, and on delivering shared meanings (semantic
resources) through application programming interfaces (APIs).

Licensing is an important consideration when seeking to promote the wide adoption of a software platform.
The ADAPT Committee selected the well-known, and broadly accepted, open-source Eclipse Public
License for the ADM, the conversion framework, and community plug-ins. The licensing model for
proprietary plug-ins is different from that of the community-supported tools: each plug-in writer can choose
whatever licensing and distribution model best fits their business model.

Several machinery manufacturers have already begun writing plug-ins for their hardware; their projects are
at different stages of development. There are currently two community-supported plug-ins: one to convert
ISO ISO11783-10 XML files; and another to perform lossless serialization and de-serialization of ADM
instances. The former serves as a template for machinery companies that use the ISOXML format to
customize, and the latter enables FMIS-to-FMIS communication, a critically-important function that the
industry has been lacking. Future plans for community-supported plug-ins include one for the Precision
Agriculture Irrigation Language (PAIL) format, and another for sustainability metrics.
The ADAPT Committee has a GitHub repository for source code, exercises transparent governance, hosts an
email list for questions (adapt.feedback@aggateway.org), and accepts contributions from outside AgGateway.
The scope of ADAPT includes self-propelled machines, non-mechanical processes, observations and measure-
ments, and post-harvest traceability. The intention is for it to facilitate the growth of digital agriculture.

Keywords. international, ISO, software development, standards, ADAPT, AgGateway.
* Corresponding author. andres.ferreyra@agconnections.com, PO Box 978, Murray, KY 42071 USA

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

2

INTRODUCTION
Different brands of farm equipment and software currently collect and consume data in a variety of
proprietary file formats. While this is a natural consequence of the industry’s growth, it makes it hard for
end-users to “connect the dots” and extract value from the data.

This lack of interoperability in agricultural field operations is not just a problem of a lack of common data
formats or syntax. There has also been a lack of a shared understanding, or semantics, among the different
industry actors involved in field operations. This can take the form of using multiple terms or codes to refer
to the same concept, or using the same term to refer to multiple concepts. (Applegate et al., 2016)

A corollary of the aforementioned lack of common semantics is a lack of common Reference Data; i.e., a
common set of controlled vocabularies, code lists and unique identifiers that can be used to identify
resources such as crop inputs, farm machine, implement and sensor models, etc. in a consistent way
understood by all.

Concurrently, growing public interest in sustainability, traceability, and compliance reporting demand an
ever-increasing amount of data be gathered as part of everyday operations in modern production
agriculture. This requirement usually includes significant amounts of frequently-changing, geopolitical-
context-dependent information such as identification numbers specific to the government agencies the
grower interacts with in their jurisdiction.

Fulfilling all these requirements in the data model of farm management information system (FMIS) software is
very difficult, especially in an international context and given the realities of corporate information technology,
where the release frequency of new software versions is constrained in multiple ways.

The keys to solving the aforementioned problems could be summarized as follows:

• Interoperate despite the multiple, often proprietary data formats used in the industry.
• Develop a framework to capture and express meaning in field operations
• Develop a framework for sharing Reference Data across the industry
• Decouple the infrequently- and frequently-changing aspects of FMIS data models.

AgGateway (www.aggateway.org), a nonprofit consortium of over 200 companies dedicated to the imple-
mentation of standards to advance digital agriculture, created its Precision Agriculture Council in 2011 to
collaboratively tackle these interoperability problems. This led to the creation of the Agricultural Data
Application Programming Toolkit (ADAPT) team, charged with implementing a common object model for
field operations as well as a set of format conversion tools (AgGateway, 2016A).

The ADAPT common object model meets requirements from AgGateway’s SPADE (planting, crop care,
harvest and post-harvest - scoped) and PAIL (irrigation, observations and measurements - scoped) projects,
and also pursues compatibility with the ISO11783-10 standard XML format (ISO, 2015) and participant
companies’ own systems.

The goal of this paper is to introduce ADAPT to the precision agriculture practitioner community. Its
specific objectives:

• Describe precursor technologies to ADAPT, particularly the ISO 11783 standard;
• Describe the parts of ADAPT, and the current status thereof.
• Describe ADAPT’s data-driven solution to the problem of incorporating geopolitical-context-

dependent and other frequently-changing data into its generic field operations data model
• Describe the tooling put in place to support ADAPT users.
• Describe efforts to provide ADAPT with a framework of common meaning and Reference Data.
• Provide practitioners with an implementation example.

PREVIOUS EFFORTS
A common "language" to enable easy communication of data among a variety of farm equipment, software
systems, and actors has long been a goal and need identified within the industry. Several previous
initiatives achieved some success in this area and helped guide the ADAPT project.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

3

One of the main antecedents to ADAPT is the ISO 11783 standard (ISO, 2017), also known as “ISOBUS”.
This standard was developed seeking to solve compatibility issues between tractors and implements from
different manufacturers. This is often likened to the challenges farmers faced with hydraulic couplers: in
order to run an implement of one brand with a tractor of another, a series of adapters and fittings were often
required just to be able to get an implement to physically raise, lower, fold, or anything else that required
hydraulic power from the tractor.

A similar situation occurred with electronics and terminals for controlling farm machinery. A grower often
had a terminal in their tractor cab to control tractor operations such as transmission settings, hydraulic
flows, and to monitor the general operation and performance of the machine. To use an implement in a
field operation, they needed an additional monitor dedicated to that function; additional auxiliary control
boxes for optional features, or add-on equipment may have been needed as well. These proprietary
terminals required effort to install and set up, since many needed tractor information such as ground speed
or GPS position that were not easily obtained in the proper format or scale.

The ISO11783 standard was meant to simplify this connection process so it would be more "plug-and-
play", in line with consumer electronics. The ISOBUS standard includes several parts such as the physical
layer (ISO, 2012), which standardized the actual connector plug and other base requirements for power and
electronic communication for both the tractor and any implements or other devices connected to the
communication network (ISOBUS) used by the connected devices. (These devices coupled by, and using,
the ISOBUS are collectively known as the Mobile Implement Control System, or MICS.)

As the standard was developed, it also became apparent that the information being transferred over the
ISOBUS had value, not only to help different devices connect to each other while performing field
operations, but also to record what the different devices were doing, or supposed to be doing, and geo-
referencing all this data.

This led to the creation of task files, which can be divided into two types: planned task files or work orders,
that represent what is supposed to be done, and actual task files or work records - what was actually done.
Work orders and work records correspond to two of five Core Documents with which AgGateway has
modeled the documentation of principled decision-making in field operations (AgGateway, 2016). For
reference, the other three are Plan, Observations & Measurements, and Recommendation.

While task files provide an important foundational piece to support field operations data exchange, there
are some issues the ADAPT project hopes to resolve. An important one is that the ISO 11783 standard is
very good at identifying and describing sensor values and parameters that can be logged by a machine or
tractor-implement combination, but it does not define the necessary Reference Data very well.

A simple example will help introduce the critically-important Reference Data concept: The ISO 11783
standard clearly describes the per-area quantity of a chemical that applied in a given field operation, but the
actual chemical of interest is often under-identified, to the extent of leaving it to the operator to manually
enter the product name in the terminal. The standard cannot directly capture information such as the
product’s active ingredients, or the products that compose a tank mix, however. This can lead to problems
after the field operation, where a software system like a Farm Management Information System (FMIS)
needs to calculate total chemical/nutrient loading within a field, or a restricted-entry or pre-harvest interval
that is dependent on the product used; if the product is identified inaccurately, these safety-related time
intervals could be calculated incorrectly. This can have important regulatory implications for the grower,
especially if the product in question is a restricted-use pesticide and its name is captured incorrectly. There
is a gap in identification here; additional ISO 11783 gaps include (Applegate et al., 2016):

• The standard is limited to MICS-FMIS communication in the context of field operation execution,
and does not support FMIS-FMIS transactions that may involve additional “documents” (e.g., a
recommendation from an agronomist, or data needed to complete a regulatory report) that are not
machine-specific and therefore not covered by the ISO 11783-10 format.

• It initially supported locally-scoped identifiers only.
• It is not well-suited for some field operations such as irrigation with center pivots, where irrigated

areas have complex geometries.
• Its adoption is not yet universal, and there exists a multitude of proprietary formats for machinery

and FMIS that are inherently incompatible with it.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

4

Another precursor to ADAPT was the Field Operations Data Model (FODM), which sought to resolve
another gap with the ISO11783 standard that was especially prevalent in the North American market in the
early 2000s: most equipment manufacturers used proprietary file formats and did not follow the ISO
standard. The FODM system used Field Operations Data Drivers, or FODDs (Mapshots, 2013) to convert
between proprietary formats and the FODM. The FODDs managed the translation of data from proprietary
(or ISO) formats through the FODM so FMISs were able to access the different file formats though one
common interface. In most cases, equipment manufacturers provided their own FODD sand licensed them
to different software systems.

This system works well within its scope. However, like the ISO11783 standard, FODM is focused on field
operations that are carried out by tractor-implement combinations, with little if any consideration for
irrigation operations and documents such as recommendations. Additionally, the proprietary nature of
FODM makes any desired changes, and the governance thereof, reliant on the party controlling the FODM
system.

AGGATEWAY AND ITS FIELD OPERATIONS PROJECTS
Through 2004, agriculture-industry electronic-connectivity standards were fragmented across industry
sectors. A number of industry leaders determined that an organization should be established to address this
issue and promote industry-wide electronic connectivity; AgGateway was established in 2005 as a result.
At the time, AgGateway supported seed, crop nutrition, crop protection, and feed companies, and executed
projects for automating supply-chain management processes for those segments. Software service providers
were engaged to implement standards support. Implementation of existing standards was favored over
creating new ones. By 2018, AgGateway membership grew from a handful of companies to over 200.

In 2011, a set of influential companies in different segments (Equipment OEMs, FMIS companies,
retailers, input manufacturers, etc.) of North American precision agriculture met in Des Moines, Iowa,
United States to consider whether AgGateway's successful approach to supply chain standards and
connectivity could be applied to field operations. They concluded that the approach could work well and set
about establishing a Precision Agriculture Council within AgGateway. Shortly after establishment, the
group began project planning for a multi-year phased project to implement field operations standards and
launched SPADE1 in August 2012. A sister project, PAIL, was launched in late 2013 to focus on irrigation-
related data and processes, as well as the Observations and Measurements core document, which is an
agriculture-specific implementation of the ISO 19156 standard (ISO 2011A).

As SPADE1 transitioned to SPADE2, the project teams observed that the myriad field-operations data
formats used in the industry were the primary connectivity issue facing growers. The team agreed that
competitive advantage should be pursued at the level of doing things with data, and not at the data format
level. With that principle in mind, the team (with PAIL input) began work on mapping out the scope,
license, and processes for an open-source project to create a tool for enabling interoperability across
various field-operations data formats; ADAPT is that tool.

ADAPT: WHAT IT IS, WHAT IT DOES, HOW IT WORKS
ADAPT is a set of tools for representing agricultural field operations data and converting it among different
formats. It consists of three primary parts:

• A common object model for describing field operations, implemented as a collection of extensible
business objects.

• A set of plug-ins, or external libraries, both open source and proprietary, which contain the data
conversion logic.

• A plug-in management framework, i.e., a mechanism for discovering, enumerating, and invoking
these data conversion libraries at runtime.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

5

The ADAPT Object Model
An object model represents some part of the world that is of interest. Object models are composed of
classes (which represent groups of related data; an object-oriented version of the classic concept of a data
type) and the relationships among them. Figure 1 shows a small part of the ADAPT object model with five
classes (boxes labeled Grower, Farm, etc.) and the relationships among them (the arrows). The data
(attributes) contained in each class are listed inside its box; for example, a Grower (which represents the
business entity, rather than the person, which is modeled using Person and PersonRole classes, not shown)
has an attribute called Name, which is of the String class.

Fig. 1: A small subset of the ADAPT object model in the form of a UML class diagram (ISO, 2005) that
shows some of the classes related to the concept of a Grower. Simple arrows represent associations (e.g.,
when an object contains references to another object). The arrows tipped with diamonds represent a
specialized form of association called aggregation, where an object contains other objects (e.g., a farm
can have multiple fields), but these contained objects can “stand alone”, and have their own identity
independently of the containing object. The way in which the ADAPT team implemented some of these
concepts (e.g., fields being able to exist independently of farms) was a result of maintaining
compatibility with the ISO 11783 standard, and with particular contributors’ internal data models.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

6

In order to use the ADAPT data model (also called “application data model”, or ADM), FMIS software
must first create an instance of it, and then begin populating it with instances of objects as needed by the
application at hand. For example, if a grower wishes to use ADAPT to send a Work Order for a spraying
application to a retailer or custom applicator, their FMIS would follow several steps:
• Create an instance of the ApplicationDataModel, and its children the Catalog and Documents objects.
• Create objects for the Reference Data needed by the Work Order and put them inside the Catalog; for

example, objects that describe the crop protection products that will be applied in the work order.
Reference Data is meant to be universal, and independent of the specific grower.

• Create objects for the Setup Data needed by the Work Order and put them inside the Catalog. Setup
Data refers to grower-specific data objects that describe resources being used by the document of
interest (i.e., the Work Order), but that do not specifically describe the state of the resource. Examples
include objects for the grower, farms, fields, cropzones, and boundaries that may be a target of the
work order. If the work order was internal to the grower’s own operation, it could also include
references to specific machines, and to operators thereof.

• Create objects describing the desired field operation and put them inside the Documents object. In this
case, it would entail creating instances of:
o The Work Order document;
o A WorkItem object, representing the desired pass over the field and referenced by the Work Order;
o A WorkItemOperation object, that describes the spraying operation;
o One of two possible Prescription objects (chosen based on the level of spatial detail desired to

specify placement) that reference the Product objects created earlier, and that describe how much
of each product to apply to the fields and cropzones represented by previously-created Setup Data.

To better understand specific classes (e.g. WorkItem), please refer to the source code located in https://github.
com/ADAPT/ADAPT and the material listed in the Sample Code and Application Notes section, below.

An important aspect of ADAPT is how it manages identification. Figure 1 shows the use of a class called
“CompoundIdentifier” to identify instances of objects. This class provides powerful functionality meant to
reconcile different identification schemes used in the industry; its use was described in detail by
AgGateway (2017). The Implementation Example section of this document shows how instantiating a
CompoundIdentifier and various examples of Setup Data are actually implemented in code.

ADAPT Plug-Ins
Once the application data model has been instantiated, and the FMIS has populated it with objects of
interest, the FMIS will invoke a plug-in to perform a conversion. Understanding how this works may be
best accomplished using examples. Figure 2 below shows two:

Fig. 2: Two examples of ADAPT-mediated data conversion. Fig. from AgGateway (2016), w. permission.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

7

Incoming data from a Mobile Implement Control System (MICS, i.e., the controller in the cab of a tractor or
other farm machine. Leftward data flow, shown in red): A proprietary-format data file coming from a
controller in the field is converted by a manufacturer-specific plug-in into an instance of the object model; a
farm management information system (“FMIS A”) consumes the data.

Communication between Farm Management Information Systems (FMIS, i.e., farm management software.
Rightward data flow, shown in blue): FMIS A creates an instance of the ADM, populates it with the data it
wants to transmit, and uses the ADM (“ADAPT”) plug-in to serialize it to a file. This file is transmitted to
another FMIS using the Internet or another means. (File transport is currently out of scope of ADAPT,
accommodating different solutions available in the industry.) FMIS B uses the ADM plug-in to convert the
ADAPT-formatted file to an instance of the ADM, and then consumes the data.

Note how FMIS A and FMIS B are both supported by Reference Data, i.e., a distributed system of common
unique identifiers for products to be shared across the industry by manufacturers and third-party data providers.

The ADAPT plug-in concept supports several scenarios along several dimensions: open-source plug-ins
and closed-source plug-ins, freely-available plug-ins and for-fee plug-ins, liberally-licensed plug-ins and
per-user licensed plug-ins. The plug-in ecosystem can be both market-driven and collaboration-driven as
various plug-in providers consider what is best for their company and their customers. The Implementation
Example section of this document demonstrates how to invoke the ADM plug-in (open-source, freely-
available, liberally-licensed) for data export / import, but the example is extensible to any plug-in.

A few key points follow, related primarily to what ADAPT is not:

• ADAPT is not a stand-alone application: ADAPT is a set of libraries that are linked to, and used
by, other software applications.

• ADAPT is not a file transfer mechanism: The scope of ADAPT is limited to invoking plug-ins.
These were envisioned originally as format-conversion tools that produce a file on export. This
file can then be transmitted as needed. Plug-in authors are free to add communication features to
their plug-ins, however; there is nothing wrong with a plug-in invoking a web service to transmit
data it has converted, for example.

• ADAPT is not an authentication & authorization mechanism for sharing data: Associated with the
idea that file transfer is out of scope, the mechanisms for authenticating and authorizing users to
access or transfer data is likewise out of scope.

ADAPT Plug-In Framework
Figure 3 shows how the ADAPT plug-in framework is organized. All plug-ins implement the IPlugin
interface – a pattern of required data attributes and functions. This allows an instance of the PluginFactory
class, created in an FMIS, to enumerate available plug-ins by inspecting the precompiled code libraries in a
given subdirectory for the presence of “Import” and “Export” functions. Once enumerated, the FMIS can
programmatically load the required plug-in and perform the necessary data transformation operation.

There remain some areas in which this implementation must mature. Often there are constraints on the
MICS platform (usually on product name length, or the supported depth of the Grower/Farm/Field tree)
that need to be communicated back to the FMIS prior to the creation and population of the ADM object.
There is currently no automated mechanism for reporting these limitations, so the responsibility falls to the
plug-in developer to document these issues appropriately.

Another current issue is how the ADAPT team communicates status of the plug-in ecosystem. The team
maintains a list of those companies who have either provided a plug-in or committed to do so. Some plug-
in providers have even gone further and provided details as to the status of their plug-in(s). While a good
start, more data needs to be collected and shared regarding current plug-in status, future plans, and features
supported. The information must also ultimately be expressed in a machine-readable way that can help
farmers make equipment and software decisions.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

8

Fig. 3: Organization of the ADAPT Plug-In Framework, shown as a UML class diagram. (ISO, 2005).

DEALING WITH GEOPOLITICAL-CONTEXT-DEPENDENT DATA
As mentioned earlier, farm management information systems are inextricably linked to the grower’s
business processes, which in turn tend to involve geopolitical-context-dependent data; for example:

• The EPA number in the description of a crop protection product in the United States.
• The German Bundessortenamt code used to designate crop varieties.
• The FSA Farm Number, Field Number, and Tract Number, used to identify areas for participation

in US government programs.

These attributes are specific to a particular country or region and can change along with the laws and
regulations that mandate their use. It is of great importance to an FMIS to include this information (in order
to be relevant in the context of the grower’s business processes), but geopolitical-context-specificity
presents a formidable scalability and versioning problem when the FMIS is used internationally.
Additionally, the prospect of temporal change creates problems for users because object model changes that
would accompany the addition or deprecation of a particular attribute would necessarily require the release
of a new version of the software, with deployment, training and version maintenance costs for all involved.

These challenges are generally inconsistent with the use of standards such as ISO 11783, which focus on
representing “universal” concepts such as application rates by mass, volume or units per area, distance or
time; yields by mass or volume per unit area; distances; and so forth. Making changes in a standard usually
follows a multi-year timeline, which can’t accompany the rate at which variables may enter and exit a
grower’s regulatory context; ISO 11783-11 (ISO, 2011) targeted the timeline problem by defining a data
dictionary for the variables being collected in ISO 11783-10 task files that can be added to independently of
the standard’s revision cycle; however, the data dictionary entities (usually called “DDIs”) are very
narrowly-scoped to be machine- and implement-specific; furthermore, a cursory examination of their
content (ISO, 2018) shows that the underlying intent is to capture “universals” that are independent of any
particular geopolitical context.

An FMIS object model should thus simultaneously reconcile:
• Simple/generic (as a typical internationally-usable standard that is free of regional clutter) vs

comprehensive/specific (to enable the capture of geopolitical-context-dependent data), and
• Static (based on controlled vocabularies the meaning of which can be agreed upon by all users) vs

dynamic (to enable rapid extensibility of said vocabularies to accompany change).

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

9

The ADAPT, SPADE and PAIL teams solved this problem using a flexible data-driven approach: the
ContextItem System. This method was described in detail by Daggett et al. (2016), but essentially
implements the following key ideas (Illustrated in Figure 4):

• ContextItems are defined as key-value pairs with optional additional metadata (such as units of
measure and timestamp information).

• The keys (called “Code” in the model) convey the meaning of the value.
• This meaning is further documented using a class called ContextItemDefinition, available using an

API at https://api.contextitem.org that can be accessed by FMIS or other systems that encounter
(or wish to encode) a given ContextItem in a data file.

• ContextItemDefinitions can provide strings in various languages (Lexicalizations) to communicate
to a user what the underlying variable means. They can also encode the geopolitical context (using
controlled vocabularies such as the ISO 3166-2 codes) and the class(es) within the data model that
the given ContextItem can be used in. This enables class- and geopolitical-context-specific
searches for ContextItemDefinitions in the API.

Figure 4: The ContextItem system data model. Several classes (CompoundIdentifier, TimeScope,
Lexicalization, GPCTypeEnum,etc.) are not shown, for clarity.

PROGRESS TO DATE
Implementation of the Framework and Data Model
The data model has been released and the source code of its current release version (1.2), that all known
plug-ins are compatible with, is available at https://github.com/ADAPT/ADAPT/releases/tag/v1.2.0.

This object model is currently in use in multiple production systems. Being an open-source project, it will
continue to evolve with the changing needs of the participating companies. The latest versions of the data
model expressed as UML class diagrams, available at https://aggateway.atlassian.net/wiki/x/RQDbAg,
offer a glimpse of what may be implemented in the future.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

10

Governance
AgGateway established a standing ADAPT Committee, divided in turn into Business and Technical Teams,
which provide day-to-day oversight for the project. The teams meet periodically: the Business Team
establishes the general project direction, manages resources, and enacts a communication strategy; the
Technical Team reviews code contributions for consistency with the existing code and relevance to the
overall goals of ADAPT. Code contributions follow a documented path to approval on Github (github.com,
2016), allowing for transparency and maintainability of the source code. While most contributions come
from AgGateway members, the project welcomes all interested parties. There is an email address to direct
questions to, adapt.feedback@aggateway.org.

Code Versioning and Branching
An important aspect of governance of a multi-stakeholder, open-source project like ADAPT is how to manage
successive versions of the code and the naming thereof (“versioning”). Another important aspect is how code
submitted by the different contributors gets incorporated into these versions (“branching policy”).

The ADAPT team chose a versioning strategy called Semantic Versioning 2.0 (Preston-Werner 2013). It is
based on a version naming scheme of the form A.B.C where A is the major version number, B is the minor
version number, and C is the patch number. The major version is incremented when the new version
includes a “breaking change”, that will result in a new version being incompatible with the previous one.
The minor version is incremented when there is a significant, albeit non-breaking, addition. The patch
number changes when there is a revision to a minor version, typically as a result of a (nonbreaking) bug fix.

Regarding branching policy, ADAPT follows a method described by Driessen (2010). First, a definition: a
branch is a copy of the source code that incorporates a series of changes made by one or more developers.
ADAPT keeps two branches, Develop and Master. The Master branch reflects the latest released version,
and is the source code used for deployment. The Develop branch contains the code staged for the next
release. Developers wishing to contribute must make their own fork (i.e., personal copy) of the Develop
branch, modify it, and request that it be merged back into Develop (a pull request, Johnson, 2013). These
requests, and the approval thereof, are managed by the ADAPT Technical on GitHub (github.com, 2016).

Proprietary Plug-ins and FMIS Adoption
As with any project of this nature, initial adoption has been a function of market forces. Many MICS and
FMIS companies were hesitant to commit their limited development resources to the task of integrating
ADAPT until there was both verified demand by their customer base and sufficient confidence that the
collaborative nature of ADAPT was sustainable.

Despite this behavior there have been several MICS companies that have created ADAPT plug-ins for their
proprietary formats. John Deere was the first to release plugins for three different MICS models (Greenstar
2600, 2630, and the 4600). Topcon provided engineering help to get the ISO 11783 plug-in to a production
state in early 2018, and ISOXML-using companies are expected to use this work as a basis for their own
ISOXML implementations. In June of 2018 Trimble Inc. announced to the ADAPT community the
availability of two plug-ins to support four of their MICS models. CNH Industrial and two other major
OEMs are working to develop plug-ins to support their formats of interest; these plug-ins should be
released by the end of 2019. The page at https://adaptframework.org/companies-supporting-adapt/ provides
more information.

On the FMIS front, several companies have integrated the ADAPT framework to leverage the
commercially-available plug-ins from John Deere, as well as the ISO plugin. There have been efforts to use
the "ADM plug-in" to serialize data for exchange between FMIS companies, and a pilot project is
underway to use RESTful APIs for exchange (allowing for more "transactional" exchange of data using
ADAPT objects). Many companies appear to be embracing a philosophy of opportunistic adoption by
leveraging existing engineering priorities and upcoming projects as opportunities to integrate ADAPT.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

11

Community-Supported Material
The ISO 11783 Plug-In
One of the first plug-ins developed for ADAPT was the "ISO Plug-in", meant to provide support for data
files that follow the ISO11783 standard. At the time of this writing the ISO plug-in is on its second
revision. The plug-in is made available under the same open-source license as the ADAPT Framework; this
enabled a wide community to contribute to its creation and improvement.

The ISO 11783 plug-in serves several purposes; first, enabling ADAPT compatibility with the numerous
ISO-11783-compliant machines and terminals in the marketplace. This is important given the growing
number of 11783-compatible devices worldwide, but is especially significant for the European
marketplace, where adoption of the ISO standard is widespread. The ADAPT ISO plug-in thus enables
FMIS software to read/write to many different ISO-compliant OEMs, thus increasing the value that
integrators receive for implementing the ADAPT framework, even before many OEMs with proprietary
formats have finished their respective plug-ins.

A second purpose of making the ISO plug-in available and making it open-source was to give other OEM's
a starting point. Without some open-source material to draw from, OEMs with their own proprietary
formats had an uphill climb to create their own plug-in from scratch. The ISO plug-in can be used as a
guide on how the ADAPT team would like to handle different edge cases as well as base to build from and
tweak to create a plug-in for a proprietary format.

All plug-ins serve basically the same function, to map data from one format into, or out of, the ADAPT
model; this provides FMIS and other software companies a common interface for all file formats. Using the
open source ISO plug-in allows OEMs to have a functional plug-in to look at to see how it works, but since
it is under the open source license they also have the potential to reuse some of the code where applicable
reducing their overall development effort.

A third purpose of the ISO plug-in was to drive more consistent implementation of the ISO 11783 standard
itself. As with most standards, the purpose is to get all parties to do things in the same way where possible
while not inhibiting competition. However, standards are created by parties who often have very different
approaches and goals; they come together to create a common understanding. This generally leads to some
grey areas in the standard where the parties could not come to full agreement, and ISO 11783 standard is no
exception. In an effort to not limit the viability of different solutions, the standard had to be flexible enough
to support very different use cases and solutions. This, however, leads to slightly different implementations
that can be confusing and cause incompatibility between different systems that can both claim to follow the
standard. The Agricultural industry Electronics Foundation (AEF) has worked to develop conformance
tests for the ISO11783 standard to resolve this issue. The conformance tests are created to drive a common
implementation of the standard to increase compatibility between systems and minimize the differences in
implementation. The AEF's efforts have predominately focused on machine to machine interface (tractor-
implement) portions of the standard, with not as much focus put toward the compatibility of field
computers and FMIS systems. The ADAPT team worked closely with the AEF FMIS conformance test
team during the development of the ISO plug-in to help insure it would follow the FMIS conformance test
requirements. The hope being that the ADAPT plug-in could be used as a means to implement the
conformance test requirements, almost automatically to an FMIS that implements the framework. This
would also have the effect of driving OEM's to ensure their field computers were compatible with the
ADAPT ISO plug-in as a kind of conformance test. If the OEM did not agree with the implementation
within the ISO plug-in or was unable to change their implementation, they would then have the option to
develop their own, essentially proprietary ISO plug-in to support their specific implementation of the
standard using the original ADAPT plug-in as the open source base for their development.

The ADM Plug-In
Plug-ins made for MICS-to-FMIS communication such as the ISO 11783 plug-in, or specific
manufacturers’ MICS plug-ins, are inherently lossy. This means that the ADAPT data model can express
more data than the MICS (for example, a strategic document such as a crop Plan, or the Observations and
Measurements taken in the field that gave rise to a Work Order), and that some data will be lost in FMIS-
to-MICS translation (though likely not in the opposite direction). This is a natural consequence of the data

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

12

model on the machinery being specific to managing the field operation itself. There are, however, many
situations that call for lossless communication of data between two parties; FMIS-to-FMIS data exchange
is the prime example thereof.

The ability for two different manufacturers’ FMIS to exchange data beyond the scope of a field operations
task file has eluded the industry to date. The ADAPT Team created a special plug-in to enable the necessary
lossless serialization (i.e., conversion of data in an object model to a stream of bytes that can be
exchanged): the ADM plug-in. It uses a mix of JSON (IETF, 2017) and ProtoBuf (Google, 2017) to
serialize the entire common object model for persisting to storage or packaging for transport. While ADAPT
does not currently make provisions for the movement of the resulting file among data exchange partners, as of
this writing, companies are either using RESTful application programming interfaces (APIs) to exchange
data or building communication features into their plug-ins to do the same. (M. Stelford, Pers. Comm.)

Visualizer
As the ADAPT data model took shape among the development team, it became apparent that the team
needed a way to visualize the data model. So, the team develop the aptly-named utility called "The
Visualizer". This program, located at https://github.com/ADAPT/ADAPT-Visualizer, represents the data
model in a tree structure with special support for crop field views. Not only does it help the team during
development, it has proven a critical learning tool for new implementers.

Sample Code and Application Notes
The team put together a group of code samples, found at https://github.com/ADAPT/ADAPT-Samples, that
illustrate various aspects of integrating the ADAPT framework into FMIS and other software. Another
important deliverable was a set of application notes that cover various fundamental aspects of using
ADAPT. These application notes feature excerpts from the sample code; they can be found at
http://aggateway.org/eConnectivityActivities/Committees/ADAPTOversight.aspx.

Other Tooling
Early in the development effort the ADAPT team selected Git (Chacon and Straub, 2014) as its version
control system and GitHub (Github.com, 2016) as its primary repository service. In March 2018, the team
connected GitHub with the project-management service called JIRA (Atlassian, 2015A) to provide for
sophisticated workflow management. Also, in March 2018, a participant implemented continuous
integration support using Travis CI, a hosted, distributed continuous integration service, free of charge for
open-source projects (Travis CI, 2018). This enables the team to go from accepting a pull request to
compilation, to unit testing, to NuGet-package production, to NuGet-package deployment, where NuGet
(nuget.org, 2018) is a manager for dynamic-link libraries, a preferred distribution mechanism for the
ADAPT framework and its plug-ins.

Community
ADAPT is an open-source project. The Australian organizational-productivity company Atlassian
graciously provided its best-in-class wiki and project-management cloud services, Confluence (Atlassian,
2015) and JIRA (Atlassian, 2015A) respectively, to support ADAPT’s development, given its open-source
status. Anyone in the world with an internet connection can thus create a wiki account and a GitHub
account and begin contributing. AgGateway funds project management and marketing efforts. ADAPT's
core team is composed of representatives from AgGateway-member companies. Team process definitions
were informed by an open-source community expert that AgGateway hired to help avoid pitfalls of
previous failed open-source projects, as well as implement proven successful practices.

Licensing
The ADAPT Oversight Committee worked with all interested AgGateway Member Companies to compile
a list of key requirements for the Open Source Software (OSS) License to select for recommendation to
AgGateway Leadership for providing access to the ADAPT software assets to the global community. These
requirements are listed in Table 1, below.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

13

Table 1: Stakeholders and their interests

Stakeholder Interests
AgGateway
(ADAPT's Steward)

• The license is usable.
• The license is well-received internationally.
• The license is viewed as an integral part of promoting community and

preventing fragmentation.
• The license encourages integrators to keep current with the latest stable

ADAPT releases.
End Users • ADAPT performs as promised
Software
(MICS and FMIS)
Companies

• The license permits ADAPT-compatible extensions to the data model and
plug-in source code

• The license permits providing ADAPT-compatible plug-ins under company-
specified license terms, without restrictions on those terms.

• The license permits releasing plug-ins in source code form, binary form, or
both. (In other words, source code disclosure is not required.)

• The license expressly states that companies are not required to support any
unofficial "versions" of ADAPT (i.e., "forks).

Software Developers • The license permits building proprietary software that leverages the ADAPT
data model.

• The license permits running multiple concurrent ADAPT instances.
• The license permits use of supporting resources, such as wiki content, test

data, access to additional support, etc.
• The license permits developing plug-ins for formats other than those over

which the developer has control (e.g., AEMP, USDA) and provide those plug-
ins to other companies, provided that the identity of the software provider is
clear to plug-in users.

Through communication with the Eclipse Foundation, the ADAPT team identified an OSS community
expert to help guide the process of selecting the best OSS license to fulfill ADAPT’s requirements. The
member companies provided funding to engage the expert on a consulting basis.

Although not an attorney, the consultant had a lot of practical knowledge as well as a great ability to
explain OSS complexities to stakeholders unfamiliar with the domain. This helped to speed up the process
of selecting a license. Stakeholder companies were engaged to ensure their businesses would be supportive
of the selected license to recommend for consideration to AgGateway leadership. Attorneys from several
companies weighed in with questions/perspectives which helped the ADAPT Team gain additional
confidence in the recommended license.

In the end the ADAPT Committee recommended the Eclipse Public License version 1.0 OSS license
(Eclipse Foundation, 2003), which the AgGateway Leadership team adopted. Although this process took
much longer than most stakeholders expected, it was an important foundational step to ensure strong
support by a wide array of companies worldwide.

A significant aspect of ADAPT is that, despite its governance residing within an AgGateway committee,
AgGateway does not require that licensees of, and/or contributors to, the ADAPT framework be members
of AgGateway.

IMPLEMENTATION EXAMPLE
This section guides the reader through a simple implementation of ADAPT concepts associated with the
second example in the above “How it Works” section (FMIS-to-FMIS communication). It assumes the
reader has a basic familiarity with the C# language and object-oriented software concepts, and can access
the code and data model at www.adaptframework.org.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

14

Instantiating and Populating the Application Data Model
The ApplicationDataModel is the root object in ADAPT

ApplicationDataModel export = new ApplicationDataModel();

The Catalog object (inside the ApplicationDataModel) holds all the items one would expect to find in a
"pick list". Alternatively, it could be seen as the place to put everything used "by reference" (as opposed to
“by value”) in any of the Documents being built.

export.Catalog = new Catalog();

The Documents object (inside the ApplicationDataModel) is built to house the Core Documents that
represent field operations (AgGateway, 2016), and holds all the Plans, Recommendations, WorkOrders,
WorkRecords, and their respective component parts. For clarity, this example does not include documents.

export.Documents = new Documents();

FMIS applications often put field operations in the context of a crop year. What follows creates a "crop
year" TimeScope object to tag objects with.

TimeScope cropYear = new TimeScope();
cropYear.Description = "2018";
cropYear.DateContext = DateContextEnum.CropSeason;
export.Catalog.TimeScopes.Add(cropYear);

The next step is to create the Grower object. The constructor will automatically create the Id property and
assign the next available ReferenceId integer. Note that ReferenceId must be unique in the scope of any
instance of the data model; this is ensured by having the framework create it automatically.

Grower adaptGrower = new Grower();

ADAPT allows systems to associate internal, unique identifier to objects. In this case, a Universally Unique
Identifier or UUID (Leach et al., 2005) is associated with the Grower object by creating a UniqueId object
and adding it to the Grower object's CompoundIdentifier.

UniqueId ourId = new UniqueId();
ourId.Id = "7d2253f0-fce6-4740-b3c3-f9c8ab92bfaa";

Note the available IdTypeEnum choices. Not everybody uses the same way of identifying things in their
system. As a result, ADAPT supports a number of identification schemes.

ourId.IdType = IdTypeEnum.UUID;

Almost as important as the identifier is knowing who created it (or where it came from).

ourId.Source = "www.some-company.com";
ourId.SourceType = IdSourceTypeEnum.URI;

Each ADAPT CompoundIdentifier can thus have multiple unique identifiers associated with it. This has
powerful implications: not only can an organization’s identifier for something be persisted, but so can the ident-
ifiers that the organization’s data exchange partners assign to the same object. Users are strongly encouraged to
persist and return identifiers passed to them; this has the potential to result in a "frictionless" conversation once
the initial mapping is done, but the benefit only emerges if all participants are "good neighbors".

adaptGrower.Id.UniqueIds.Add(ourId);

Many of the objects in ADAPT have a minimal number of properties. Developers shouldn’t be overly
worried if there isn’t an obvious place to put all their data. It may be in an associated object or intended to
be expressed as a ContextItem (See the section below on Geopolitical-Context Dependent Data)

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

15

adaptGrower.Name = "Some Random Grower";

Adding the Grower object to the Catalog:

export.Catalog.Growers.Add(adaptGrower);

Having created the Grower, creating the Farm object is next. The constructor will automatically create the
Id property and assign the next available ReferenceId integer.

Farm adaptFarm = new Farm();
ourId = new UniqueId();
ourId.Id = "c4618a14-4c60-4873-964f-52cc804f1856";
ourId.IdType = IdTypeEnum.UUID;
ourId.Source = "www.some-company.com";
ourId.SourceType = IdSourceTypeEnum.URI;
adaptFarm.Id.UniqueIds.Add(ourId);
adaptFarm.Description = "Some Random Farm";

This farm object is now linked to the grower. Note that this is the ADAPT-generated integer (ReferenceId)
in the Grower's CompoundIdentifier object, and not the FMIS-generated UUID.

adaptFarm.GrowerId = adaptGrower.Id.ReferenceId;

Add the Farm object to the Catalog.

export.Catalog.Farms.Add(adaptFarm);

The important takeaway here is that as part of integrating ADAPT, the FMIS must include logic that maps
the data from its internal business objects (Grower, Farm, Field, Product, etc) into the corresponding
business objects in ADAPT. In the same fashion, plug-in creators must map the business objects contained
in their targeted formats to ADAPT objects.

Exporting Data with the ADM Plug-In
The PluginFactory looks at all the DLLs in the target directory to find any that implement the IPlugin interface.

var pluginFactory = new PluginFactory(pluginPath);

Only the ADMPlugin (i.e., lossless serialization for FMIS-to-FMIS communication) is of interest in this
example, so the code below addresses it directly instead of looking through all the available plug-ins that
the PluginFactory found.

var admPlugin = pluginFactory.GetPlugin("ADMPlugin");

The ADMPlugin doesn't require any initialization parameters.

admPlugin.Initialize();

Export to a local directory using the ADMPlugin

admPlugin.Export(export, outputPath);

The ADMPlugin creates an "adm" subdirectory in the indicated local directory that contains:

• An additional "documents" subdirectory that contains document files with data encoded using
protocol buffers or “protobufs” (Google, 2017).

• An AdmVersion.info file that contains version information.
• A ProprietaryValues.adm file
• A Catalog.adm file that contains the zipped JSON serialization of the

ApplicationDataModel.Catalog object.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

16

Importing Data with the ADM Plug-In
What follows is logic to import (presumably in another system) the same data from the "adm" subdirectory
just created; the corresponding ADP instances can be easily compared in the debugger.

var pluginFactory2 = new PluginFactory(applicationPath);
var admPlugin2 = pluginFactory.GetPlugin("ADMPlugin");
admPlugin2.Initialize();

Note that when a plug-in imports, the returned object is a list of ApplicationDataModel objects.

var imports = admPlugin2.Import(outputPath);

DISCUSSION
ADAPT’s power lies in its common object model
The ADAPT common object model is the direct result of requirements elicited from the SPADE and PAIL
projects, as well as other participating stakeholders. This has allowed it to be representative of the data
requirements of real-world field operations. Very early versions of the model were large and skewed
heavily towards North America, but the team refactored the data model in a more data-driven way (using
ContextItems, for example) that resulted in a leaner, multiple-geography-friendly model.

ADAPT’s plug-in architecture removes barriers to adoption
The ADAPT plug-in licensing policy enables the authors of the plug-ins (format conversion libraries) to
license and distribute (or not) their plug-ins (and the source code thereof) as they see fit. This was designed
with the intent to remove barriers to adoption of ADAPT.

Authors who wish to solve a format conversion problem and subsequently wish to make their plug-ins
community-supported (i.e., open-source) are encouraged to do so, and encouraged to use the Eclipse Public
License used for the ADAPT data model and plug-in framework.

However, authors who wish to retain ownership of their source code, and/or want to distribute binaries (i.e.,
compiled plug-ins) only, are welcome to do so as well. This enables them to protect intellectual property,
while at the same time contributing to the solution of the industry’s interoperability problem.

ADAPT serialization enables lossless FMIS-to-FMIS transfer
Plug-ins created for communication with machinery are inherently “lossy”, because ADAPT’s object
model is a comprehensive superset of individual companies’ contributions, and therefore more
comprehensive than the data model of the MICS. In other words, ADAPT’s data model can likely contain
data that does not fit into a controller.

One of the use cases ADAPT was meant to address is lossless data transfer; i.e., where the sending end and
the receiving end of a data transfer are using the ADAPT data model. As mentioned earlier, enabling this
use case required the creation of the ADM plug-in, which serializes everything in an ADM to JSON and
Protobufs files. While this is very valuable and revolutionary by itself—FMIS of different brands had
heretofore never been able to exchange field operations business data such as recommendations, work
orders, etc.—the ADM plug-in has another valuable purpose: to provide a starting point for plug-in writers.
Since it is designed to serialize all the classes in the data model, developers can tailor it to their needs,
primarily by removing unnecessary parts.

ADAPT leverages the use of data type definitions and controlled vocabularies
ADAPT has mechanisms for defining variables of different types in a data-driven way. The ContextItem
system described above enables defining variables for use in various geopolitical contexts, and the
Representation System, analogous to the data dictionary of ISO 11783-11, allows defining universal
variables such as yield. A third mechanism for defining data types specifically for use in Observations and
Measurements, the OMCodes System, is under development.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

17

These three data type registries provide FMIS and other systems the capability of using controlled
vocabularies (e.g., pest lists, phenological scales, and/or other products of university and government
research and extension) without a lot of overhead: define the variable in data (as opposed to code), put it on
the shared infrastructure (AgGateway provides a simple, transparent governance process for doing this),
and all of the ADAPT-aware systems throughout the world become instantly able to collect and display this
information. Hopefully this will translate into greater operational use of research work, and greater
collaboration between academia, government, and the private sector.

ADAPT is a Cooperative Endeavor
In addition to the collaborative work of multiple companies within ADAPT, the ADAPT team operates in
the context of continuing cooperation between AgGateway and relevant standards organizations such as the
Agricultural Industry Electronic Foundation (AEF), which implements the ISO 11783 standard, and the
American Society of Agricultural and Biological Engineers, which holds the United States’ TAG
(Technical Advisory Group) role for the ISO 11783 standard; close collaboration with these organizations
allows the ADAPT team to provide feedback to ISO 11783’s ongoing development process.

Collaboration is not restricted to North America: there are multiple European contributors to ADAPT, some of
whom are using it in the context of the European Union’s project of Internet of Food and Farm, IOF2020
(www.iof2020.eu). There are also active users in Japan, and expressions of interest from other parts of the world.

CONCLUSIONS
The agriculture industry’s need for greater data interoperability motivated AgGateway field operations
projects such as SPADE and PAIL. These projects elicited knowledge from subject matter experts, and
provided a set of requirements that in turn motivated the creation of an open-source project, the
Agricultural Data Applications Programming Toolkit (ADAPT).

ADAPT consists of a common object model and tools (software libraries called “plug-ins”) to interconvert
between that model and other formats. Plug-ins can be licensed and distributed as needed by their authors.
The common object model is distributed under the Eclipse public license, as are two community-supported
plug-ins, one used for ISO 11783-10 format conversion, and the other to enable lossless FMIS-to-FMIS
communication.

ADAPT uses established best practices for managing versioning and code branching, as well as transparent
governance. Although the governing body is a committee within AgGateway, code contributions are
welcome from AgGateway members and nonmembers alike.

ADAPT is now in the hands of the agriculture industry and open-source community. The direction and
growth of the code will in large part depend on enhancements contributed by participants, driven by their
individual business needs. Contributions that serve the needs of one company often serve the needs of
many, and project participants have welcomed the contributions of their peers.

ADAPT's future is bright. The broad industry support, vibrant community, comprehensive data model,
marketing and communications activity, and growing global awareness suggest that the tipping point was
reached some time ago. That said, there is still much work to do.

REFERENCES
AgGateway (2018). ADAPT Branching and Versioning Policy. https://aggateway.atlassian.net/wiki/x/WZj6CQ
Accessed 14 May 2018.

AgGateway (2017). Identification and Record Linkage http://aggateway.org/eConnectivityActivities/Committees/
ADAPTOversight/IdentificationandRecordLinkage.aspx Accessed 14 May 2018.

AgGateway (2016). Core Documents for Field Operations: The Foundation for Efficient Communication in
Precision Agriculture. http://s3.amazonaws.com/aggateway_public/AgGatewayWeb/About%20Us/
CommunicationsKit/AgGateway_core_documents_72616.pdf Accessed 14 May 2018.

Proceedings of the 14th International Conference on Precision Agriculture
June 24 – June 27, 2018, Montreal, Quebec, Canada

18

AgGateway (2016A). The ADAPT Toolkit: Implementing Interoperability in Precision Agriculture.
https://s3.amazonaws.com/aggateway_public/AgGatewayWeb/News/CommunicationsKit/AgGateway_ADAPT_T
oolkit_103117.pdf Accessed 14 May 2018.

Applegate, D.B., Berger A.W., Berne, D.T., Bullock, R., Craker, B.E., Daggett, D.G. (2016). Toward Geopolitical-
Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT.
A paper from the Proceedings of the 13th International Conference on Precision Agriculture, July 31 – August 4,
2016, St. Louis, Missouri, USA

Atlassian (2015). Confluence 101: Getting started in Confluence. https://www.atlassian.com/dam/jcr:438a8cda-
b614-4af8-a6c5-2a3fc949b4a6/confluence-101-getting-started-in-confluence.pdf Accessed 14 May 2018.

Atlassian (2015A). Jira 101. https://confluence.atlassian.com/jira064/jira-101-720412861.html Accessed 14 May 2018.

Chacon, S. and Straub, B. (2014). Pro Git, 2nd ed. https://git-scm.com/book/en/v2 Accessed 14 May 2018.

Daggett, D.G., Ferreyra, R.A., Reddy, L.T., Rhea, S.T., and Tevis, J.W. (2016). Filling in the blanks with
ContextItems: a lightweight method for extending field operations object models. ASABE Paper No.2462418.
ASABE, St. Joseph, MI.

Driessen, V. (2010). A successful Git branching model. http://nvie.com/posts/a-successful-git-branching-model/
Accessed 14 May 2018.

Eclipse Foundation (2003). Eclipse Public License – v 1.0. http://www.eclipse.org/legal/epl-v10.html Accessed 14 May 2018.

Github.com (2016) Hello World. https://guides.github.com/activities/hello-world/ Accessed 14 May 2018.

Google (2017). Protocol Buffers Developers Guide. https://developers.google.com/protocol-buffers/docs/overview
Accessed 14 May 2018.

IETF (2017). The JavaScript Object Notation (JSON) Data Interchange Format. https://tools.ietf.org/html/rfc8259
Accessed 14 May 2018.

International Organization for Standardization. (2018). Snapshot of the ISO 11783-11 online data base.
https://www.isobus.net/isobus/site/exports?view=export Accessed 14 May 2018.

International Organization for Standardization. (2017). ISO 11783-1:2017 Tractors and machinery for agriculture
and forestry -- Serial control and communications data network -- Part 1: General standard for mobile data
communication. International Organization for Standardization, Geneva, Switzerland.

International Organization for Standardization. (2015). ISO 11783-10:2015 Tractors and machinery for agriculture
and forestry -- Serial control and communications data network -- Part 10: Task controller and management
information system data interchange. International Organization for Standardization, Geneva, Switzerland.

International Organization for Standardization. (2012). ISO 11783-2:2012 Tractors and machinery for agriculture
and forestry -- Serial control and communications data network -- Part 2: Physical Layer. International
Organization for Standardization, Geneva, Switzerland.

International Organization for Standardization. (2011). ISO 11783-11:2011 Tractors and machinery for agriculture
and forestry -- Serial control and communications data network -- Part 11: Mobile Data Element Dictionary.
Organization for Standardization, Geneva, Switzerland.

International Organization for Standardization. (2011A). ISO 19156:2011 Geographic information -- Observations
and measurements. International Organization for Standardization, Geneva, Switzerland.

International Organization for Standardization. (2005). ISO/IEC 19501:2005 Information technology -- Open
Distributed Processing -- Unified Modeling Language (UML) Version 1.4.2. International Organization for
Standardization, Geneva, Switzerland.

Johnson, Mark (2013). What is a pull request?. http://oss-watch.ac.uk/resources/pullrequest Accessed 14 May 2018.

Leach, P. J., Mealling, M., and Salz, R. (2005). RFC 4122 - A Universally Unique Identifier (UUID) URN
Namespace. IETF Tools. https://tools.ietf.org/html/rfc4122 Accessed 14 May 2018.

Mapshots (2013) Field Operation Device Drivers. https://www.mapshots.com/_fodm/#CNH Accessed 14 May 2018.

Nuget.org (2018). An introduction to NuGet. https://docs.microsoft.com/en-us/nuget/what-is-nuget Accessed 14 May 2018

Preston-Werner, T. (2013) Semantic Versioning 2.0.0 http://semver.org/spec/v2.0.0.html Accessed 14 May 2018.

Travis CI (2018). Getting started. https://docs.travis-ci.com/user/getting-started/ Accessed 14 May 2018.

