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Abstract: The normalized difference vegetation index (NDVI) is commonly used in precision 
agriculture. The NDVI is a proxy for crop growth, health, leaf area index, crop cover, and more. 
Yet, when clouds are present, the NDVI cannot be calculated. Synthetic Aperture Radar (SAR), 
on the other hand, can penetrate clouds but is sensitive to different crop properties than the NDVI. 
Several SAR vegetation indices have been suggested to estimate NDVI via SAR, however, they 
tend to work for limited spatial and temporal settings. This study presents a hyperlocal machine 
learning approach to estimate NDVI from SAR images for agriculture fields. The approach utilized 
time series of past NDVI and multiple SAR indices to train a machine learning model each time a 
new SAR image is available over each field. Consequently, the model estimates the crop NDVI 
value from the current SAR image. Then, when the next SAR image is available, the model will 
re-learn the relationship (based on past data) which might have changed, thus, the model is kept 
up-to-date. The suggested approach was tested on 97 fields from 12 countries with 5 crop types. 
RMSE, R2, and Bias of 0.07, 0.92, and 0.00, respectively, were achieved, expressing model 
usefulness and global applicability. The suggested approach can ensure a constant stream of 
NDVI values, regardless of clouds, which is crucial in cloudy areas and at specific times during 
the growing season such as when crops start their development stage.  
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Introduction 
The normalized difference vegetation index (NDVI) which was introduced almost 50 years ago 
(Rouse et al., 1974), is still the most common index to monitor vegetation in general and 
specifically in agriculture. The NDVI can help monitor whether vegetation is healthy or under 
stress, as well as observe and detect changes in vegetation due to various reasons such as 
natural disturbances or changes in plants' phenological.  
However, in poor illumination conditions such as in the presence of clouds, NDVI cannot reliably 
be calculated because the sensor reading will contain reflected light from the clouds, therefore 
will not represent the true condition of the vegetation. As so, the window of opportunity to calculate 
high-quality NDVI is limited. 
On the other hand, the Synthetic Aperture Radar (SAR) is not affected by illumination conditions 
and can penetrate clouds, thus creating an opportunity for remote sensing of the vegetation in all 
weather conditions.  
The Sentinel-1 satellites (A and B) carry a C-band instrument, which provides a collection of data 
in all-weather, day or night with global coverage, is the most widely SAR dataset available. 
Therefore, several published studies have attempted to estimate NDVI with Sentinel-1 data using 
the VV and VH bands. This was done by correlating SAR indices or SAR backscatter (the VV and 
VH bands) to NDVI (Frison et al., 2018; Holtgrave et al., 2020; Kaushik et al., 2022; Navarro et 
al., 2016; Veloso et al., 2017) or by using mathematical models to find the relationship between 
SAR and NDVI (Filgueiras et al., 2019; Mazza et al., 2018; Mohite et al., 2020).  
Yet, indices or models with pre-defined coefficients are applicability confined, either because they 
were tested on a small number of crops, small spatial extent, or were developed for specific crops. 
Therefore, previous studies found different correlation strengths with different crops, 
phenological, NDVI values, soil types, etc., leading to the conclusion that none of the indices or 
models will work well when tested on a variety of crops, soils, or local conditions.  
From a practical point of view, a method to estimate NDVI from SAR should be like NDVI in terms 
of global applicability, regardless of crop type or local conditions. 
The approach suggested in this study seeks to provide such a solution as it makes use of multiple 
SAR indices simultaneously as well as producing a model per field, per point in time. By doing 
that, the suggested approach is able to account for the local conditions and changes of the field, 
therefore, keeping the model and its coefficients up to date based on the most relevant data. 
 

Materials and Methods 

Study sites 
97 commercial fields from 12 countries with 5 crop types were selected for this study. The source 
of the study sites is the Manna Irrigation database (not publicly available). Table 1 shows the 
crops and the corresponding number of fields per crop used here. 
 
Table 1. The number of fields per crop that were used in this study 

 
 

Crop Name Number of fields 
1 Avocado 20 
2 Almonds 19 
3 Cotton 20 
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4 Watermelon 18 
5 Alfalfa 20 

 
 

Remote Sensing dataset 
The remote sensing dataset used in this study was obtained with Google Earth Engine (GEE) 
(Gorelick et al., 2017) Python API. NDVI was calculated via the NIR and red spectral bands of 
Sentinel-2 and Landsat-8, both processed to Level-2, surface reflectance. The NDVI was 
averaged per image per field thus generating NDVI times series for each field. Images with clouds, 
cirrus, or cloud shadows were removed from further analysis. 
The SAR (i.e., Sentinel-1) time series (per field) were also obtained with GEE in the form of 
Interferometric Wide Swath Mode (IW) with dual polarization (VV+VH) and were acquired under 
level-1 processing as ground range detected (GRD). 
 

Data processing and NDVI estimation from SAR 
The data preprocessing and NDVI estimation from SAR are based on past NDVI and SAR time 
series. The data processing begins when NDVI is not available, but Sentinel-1 image is. The first 
step is to obtain NDVI and SAR indices (Table 2) time series for the last 365 days. The second 
step is to apply, per time series, a locally weighted regression algorithm (Atkeson et al., 1997) 
followed by daily interpolation with the assumption that changes in crop growth are gradual during 
short periods (i.e., between two consecutive images) (Fieuzal et al., 2013). Then, the time series 
is used for model training, where the NDVI is the dependent variable, and the SAR indices time 
series are the independent variables. The machine learning model used here is the random forest 
(RF) (Pedregosa et al., 2011). Once the model is trained, the Sentinel-1 data from the current 
image is used for the model estimation of NDVI. This process was executed for each available 
Sentinel-1 image for each of the 97 fields across 2021. 
 
Table 2. The SAR indices used in this study 

 
Name Full name Formula Source 

1 PRVI Polarimetric Radar 
Vegetation Index (1 −

𝑉𝑉
𝑉𝐻 + 𝑉𝑉) ∗ 𝑉𝐻 Chang et al., 2018 

2 RFDI Radar Forest Degradation 
Index 

𝑉V − 𝑉H
𝑉𝐻 + 𝑉𝑉 Flores et al., 2019 

3 RVI Radar Vegetation Index 4 ∗ 𝑉𝐻
𝑉𝐻 + 𝑉𝑉 Trudel et al., 2012 

4 SNI Sentinel normalized index 𝑉𝐻 − 𝑉𝑉
𝑉𝐻 + 𝑉𝑉 Filgueiras et al., 2019 

5 VH_VV_ratio VH to VV ratio 𝑉𝐻
𝑉𝑉  Veloso et al., 2017 

6 VV_VH_ratio VV to VH ratio 𝑉𝑉
𝑉𝐻 Frison et al., 2018 

 

Results and Discussion 
Fig. 1 shows the overall accuracy of the model for the entire dataset, for matching dates between 
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NDVI and Sentinel-1, while Table 3 displays the results per crop. 
Accuracy metrics of RMSE, R2, and Bias of 0.07, 0.92, and 0.00 (Fig. 1), respectively express 
model robustness and global applicability.  
Orchards (almonds and avocado) achieved better results than field crops (alfalfa, watermelon, 
and cotton). This can be attributed to the fact that orchard NDVI changes less than field crops 
during the growing season. 
The crop with the lowest R2 is alfalfa which can be explained by its short phenological cycles (~28 
days), which might not be well captured by the NDVI due to a lack of sufficient images. Perhaps 
with higher NDVI frequency for model training, the results can be improved. 
 

 
 
Table 3. Model performance per crop 

 Crop n RMSE Bias R2
 

1 Almonds 375 0.03 0.00 0.96 
2 Avocado 275 0.04 0.00 0.96 
3 Cotton 189 0.05 -0.01 0.95 
4 Watermelon 247 0.06 -0.01 0.91 
5 Alfalfa 374 0.10 0.02 0.76 

 
 

Fig 1. Overall model performance 

n = 1460 
RMSE = 0.07 
Bias = 0.00 
R2 = 0.92 
Slope = 0.99
Intercept = 0.0 
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The relatively large and diverse dataset used in this study coupled with high performance 
validates the suggested approach.  
Concluding from previous studies finding, the relationship between NDVI and SAR is not 
consistent across various crops, soil types, or phenological stages. Therefore, instead of using a 
model with fixed coefficients or adhering to a specific index, the suggested approach generates 
a new model per field, per point in time (i.e., per new available Sentinel-1 image), based on the 
most up-to-date NDVI-SAR field-specific relationship.  
Hence, the suggested approach is always up-to-date, dynamic, and flexible enough to account 
for the hyperlocal changes in the field, thus achieving good results across various crops and 
locations. 
 

Conclusions 
This study proposed an approach to estimate NDVI from SAR (Sentinel-1) images for agricultural 
fields. As opposed to previous studies, the approach here did not focus on a specific SAR index, 
but rather use multiple SAR indices to estimate NDVI. A machine learning model (random forest) 
was employed to find the best combination of SAR indices per field, per point in time in order to 
estimate NDVI. This approach was validated with 97 commercial fields from 12 countries with 5 
different crop types. High accuracy metrics disclose the applicability and usefulness of this 
approach to cases where cloud cover or low NDVI frequency are present. Consequently, ensure 
high frequent NDVI for agricultural fields which can assist with daily decision-making. 
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