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Abstract. 
Soil maps are critical for various land use applications and form the basis for the successful 
implementation of precision agriculture in crop production. High-resolution soil data is now 
required in the management of sustainable land-use practices and traditional soil maps often fail 
to provide these data. There is currently a stronger demand to understand soil variation at a 
finer scale. The use of gamma-radiometric data in conjunction with other information such as 
digital elevation models (DEM) or aerial photos has become an important source of data for 
digital soil mapping. The objective of this study was to determine the extent to which aerial 
gamma-ray spectroscopy, can successfully and practically be used to accurately determine soil 
management zones and topsoil properties for precision agriculture in the South African context. 
Airborne gamma-ray data was correlated with topsoil properties and soil types from a grid soil 
survey. The SCORPAN approach in the digital soil mapping was used for the predictive 
modelling and mapping of the soil properties and soil types. The covariate data consist of 
spectral, terrain and gamma data. The different soil properties was modelled using the Cubist 
and Random Forests regression decision trees. To predict the spatial distribution of soil types, 
the Multinomial Logistic Regression (MNLR) classification model were used. In this study the 
gamma-ray data was successful in predicting the soil particle fractions of sand, silt and clay, as 
well as the soil carbon (C), calcium (Ca) and magnesium (Mg), and with the mapping of soil 
types. Gamma-ray data can be used to map soil properties and soil types accurately, with 50% 
of the conventional soil samples and observations. This is a saving in both time and money. 
More research need to be done in bigger areas in South Africa to test the concept in the 
majority of crop production areas. 
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1. Introduction 
Low potential arable land consists about one third (⅓) of the total arable land of South Africa (Le 
Roux et al., 2016). This low potential arable land is located mainly in semi-arid areas, with water 
shortage being the main problem. A low and erratic rainfall pattern is the reason for the water 
shortage. Under these circumstances, knowing the soil’s physical properties is increasingly 
important for the management of soil water for successful crop production (Hillel, 2004). 
The use of precision agriculture has been addressed as one of the solutions to meet food security 
(Talebpour, et al., 2015). Precision agriculture involves different technologies combined to 
enhance production within agricultural systems by keeping record of uncertainties and variability. 
Precision agriculture’s role in food security is higher production and sustainable quality increase 
(Gebbers & Adamchuk, 2010). 
Soil maps are critical for various land use applications and form the basis for the successful 
implementation of precision agriculture in crop production. Soil maps are graphic representations 
to provide the spatial distribution of important soil physical and chemical properties to a farmer 
(Yaalon, 1989). The farmer uses this information to make critical management decisions for 
profitable and sustainable food production (Weil & Brady, 2017). High-resolution soil data is now 
required in the management of sustainable land-use practices and traditional soil maps often fail 
to provide these data (Tunstall, 1998). There is currently a stronger demand to understand soil 
variation at a finer scale (Rampant & Abuzar, 2004). 
The current South African conventional method for determining the spatial distribution of the soils 
physical and chemical properties is a grid survey, which includes soil classification and the 
sampling of the top soil for chemical analysis (Fertasa, 2016). This way of determining the spatial 
distribution of the soil is labour intensive, slow and thus costly (Viscarra Rossel & McBratney, 
1998; Schuler et al., 2010; Van der Klooster et al., 2011). The sampling and measurement density 
of this conventional method is relatively coarse and may not be adequate to reveal all the variation 
in the soil (McBratney et al., 2005). 
Advances in the fields of digital soil mapping (McBratney et al., 2003) and remote sensing allows 
experts to create timeous and cost effective soil maps (Mulder et al., 2011; Heggemann et al., 
2017). 
The knowledge of gamma-radiometric data and how it relate to soil-forming materials has 
increased the value of gamma-ray spectrometry for the use in digital soil mapping (McBratney et 
al., 2003). The use of gamma-radiometric data in conjunction with other information such as digital 
elevation models (DEM) or aerial photos has become an important source of data for digital soil 
mapping (Cook et al., 1996). 
The aim of this study is to determine the extent to which aerial gamma-ray spectroscopy, can 
successfully and practically be used to accurately determine soil management zones for precision 
agriculture and determine the top soil properties like, texture, organic carbon, pH and plant-
available nutrients (Ca, Mg, K and P) in the South African context. 
 

1.1 Soil properties well correlated to Gamma radiometrics 
Literature show that there are a good and reliable correlation between soil texture and soil gamma 
radiation (Heggemann et al., 2017; Herrmann, 2015; Pätzold et al., 2020; Petersen et al., 2012; 
Pracilio et al., 2006; Priori et al., 2013; Priori et al., 2014; Rouze et al., 2017a; Rouze et al., 2017b; 
Taylor et al., 2002; Van Egmond et al., 2010). The reason for this is that radionuclides form part 
of the soil mineral structure (K in clay minerals), radionuclides is part of the ions on the adsorption 
complex (K, Th) of soils, or it can be blocked in oxide minerals (U in goethite) (Reinhardt & 
Herrmann, 2019). 
Gamma-ray spectrometry have the potential to offer a cheaper and spatially more precise 
alternative than conventional sampling and analysis of plant available potassium (K). In precision 
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agriculture this could be of great advantage (Wong & Harper, 1999). The study of Pracilio et al. 
(2006) concludes that plant available potassium (K) can reliably be predicted by radiometrics. It 
had to be kept in mind that processed fertilizer have different isotopic ratios, this can influence 
the correlation between gamma radiometrics and plant available potassium (K) (Alhardi, 2013; 
Chauhan et al., 2013). Thus some literature show no correlation between plant available 
potassium (K) and gamma-ray data (Dierke & Werban, 2013; Pätzold et al., 2020; Reinhardt and 
Herrmann, 2019). 
The relationship between gamma radiation and soil pH is difficult to establish, because soil pH 
can readily change in agricultural landscapes by different management practises. The 
determination of pH values is an indirect effect, if working with gamma-ray spectrometry (Bierwirth 
et al., 1996). 
A positive correlation was found between organic carbon and radiometric data by Martz and De 
Jong (1990), but clay was the real emitter because the organic carbon was strongly bound by the 
clay-complexes. 
 

1.2 Soil type mapping 
The relative disparity of gamma-ray signatures allows to theoretically classify soil types. On a 
global scale it is not possible to relate one soil type to one quantitative gamma-ray signature, 
because different combinations of soil forming factors and processes can lead to the same soil 
type. With different soil types in an area it is capable and effective to do soil type mapping with in 
situ gamma-ray spectrometry (Reinhardt & Herrmann, 2017). Literature show that gamma data 
can be used in different ways to distinguish between soil types (Alomari et al., 2019; Beamish, 
2013; Marchuk & Ostendorf 2009; Martelet et al., 2014; Sanusi et al., 2014; Schuler et al., 2011; 
Vanden Bygaart & Protz, 2001). 
 

2. Materials and methods 

2.1 Study site 
The study site is a 48 ha large irrigated field by centre pivot in the northern Free State province 
of the Republic of South Africa, near the confluence of the Vaal and Mooi Rivers. It lies 
approximate 24 km south west of Potchefstroom. The coordinates is S 26°52’42” and E 26°56’45”. 
The terrain morphological class of the area can be described as plains with low relief, lying at an 
average altitude of around 1 308 meters above sea level (Kruger, 1983). The area is flat with a 
terrace going down to the flood plain of the Vaal River. 
The study area is characterised by two different parent materials. In the north east next to the 
Vaal River it is Quaternary flood plain alluvium and the rest is deep eolian sand (Smit, 1986) with 
Vaalian diabase as the underlying geology (Council for Geoscience, 2008). 
The climate of the area is hot and moist in the summer, with cool to cold, dry winters. The annual 
rainfall is 560 mm, with 83% of the total falling between October and March. The summer 
temperature is high with maximums of 29.8 °C (January) and minimums of -0.3 °C (July) (Kotze 
& Lonergan, 1984). According to the Land Type data (Land Type Survey Staff, 1984) this study 
site is of the Bd 13d land type. 
 

2.2 Airborne gamma-ray data collection 
Airborne gamma-ray data was obtained during March 2017. A Medusa MS 4000 gamma-ray 
sensor with a caesium-iodide CsI scintillator crystal of size 10.16 cm x 10.16 cm x 40.64 cm or 
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4.2 litres was used (Medusa, 2021). The spectrometer was mounted on board a gyrocopter flown 
by the geophysical company by the name of GyroLAG. The flight height was 20 meters above 
ground level and the line spacing was 20 meters apart at a speed of 120 kilometres per hour. 
 

2.3 Soil survey, sampling and laboratory analysis 
A soil survey was done in September 2014, where soils were described and classified, according 
to the South African Soil Classification System (Soil Classification Working Group, 1991) and Soil 
Taxonomy (Soil Survey Staff, 2003) on a 1 ha grid (100 m x 100 m) to a depth of 2.1 m or shallower 
if a restricting layer is encountered, using a hand auger. Soil sampling was conducted in March 
2017. A total of 48 points were sampled at the same point where the soil classification was done. 
At each point three soil samples were collected by hand-auguring to a depth of 20 cm. These 
three samples were taken within a 1 m2 area and combined into one sample. The samples were 
air-dried, crushed and passed through a 2 mm sieve to separate gravel and soil. The soil samples 
were analysed in the laboratory for pH(water) (1:2.5 soil/water ratio), electrical conductivity (EC) 
(saturated paste), %C (loss of ignition), exchangeable cations (Ca, Mg, K, Na) (ammonium 
acetate), phosphorus (Bray 1), and the percentage sand, silt and clay (NASAWC, 1990). The total 
elemental content was also measured with a Thermo Scientific Niton XL3t portable XRF analyser. 
 

2.4 Covariate data used in study 
The SCORPAN approach of McBratney et al. (2003) is used for the predictive modelling and 
mapping of the soil properties and soil types. The SCORPAN factors or environmental covariates 
is used to predict the soil type or attribute. 
The covariate data used was the Sentinel satellite imagery for 6 March 2017 to present active 
growing crop and 13 August 2017 to present the bare soil (USGS, 2022) and the SRTM 30 m 
DEM (USGS, 2022). These vector data were rasterized and resampled to fit on the 10 m 
resolution grid of the Sentinel images. Spectral covariates were developed from the Sentinel 2A 
satellite. The spectral bands (blue, green, red & NIR) and indices (brightness, coloration, redness 
& saturation indexes) is the same that Flynn et al. (2019) used. They were used to present the 
vegetation and soil in the SCORPAN method. 
From the DEM the various terrain derivatives that were calculated are analytical hillshading, slope, 
aspect, plan curvature, profile curvature, convergence index, closed depressions, flow 
accumulation, topographic wetness index, LS factor, channel base level, vertical distance to 
channel network, valley depth and relative slope position. All the GIS related calculations and 
derivatives were done in SAGA-GIS. The soil point dataset were linked to the covariates and 
exported into a text file (.txt), forming the database of the environmental covariates. 
 

2.5 Digital Soil Mapping (DSM) of soil properties 
The different soil properties was modelled using the Cubist and Random Forests regression 
decision trees (Malone et al., 2017). The soil properties dataset was divided into a training and 
independent dataset, using a stratified random sampling design. Different training dataset was 
made up with 50% and 75% of the dataset points, with all the covariates, with only the gamma-
ray data and with only the spectral and terrain covariates. 
The different models with the combination of different percentages of training data with the 
different covariate combinations used, was validated by means of RMSE, bias, R2 and 
concordance. 
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2.6 Multinomial Logistic Regression (MNLR) for soil type mapping 
A digital soil mapping (DSM) approach was used to predict the different soil properties with terrain, 
spectral and gamma-ray covariates. To predict the spatial distribution of soil types, the Multinomial 
Logistic Regression (MNLR) classification model were used (Kempen et al., 2003; Malone et al., 
2017). The soil observation dataset was divided into a training and independent dataset, using a 
stratified random sampling design. Different training dataset was made up with 50% and 75% of 
the dataset points, with all the covariates, with only the gamma-ray data and with only the spectral 
and terrain covariates. 
The soil maps were evaluated by comparing the dataset points, in the different evaluation 
datasets, to the relevant soil maps. This was done with the one-pixel buffer method as used by 
Van Zijl et al. (2012). Evaluation of the soil maps was done on the calculated total evaluation point 
accuracy and the Kappa coefficient. 
 

3. Results and Discussion 

3.1 Soil survey and classification data 
Soil classification and soil texture determination of the study area, revealed two distinct soil 
types/bodies in the study area that correlate with the parent material, as seen in Figure 4c. 
The soils in the alluvium is mainly of the Tukulu soil form and a few of the Oakleaf soil form (Tu), 
according to the South African soil classification system (Soil classification working group, 1991). 
The A horizon have an apedal to weak structure and a sandy loam textural class, with an average 
silt and clay content of 25%. The B horizon have a weak to modereate structure and a loam 
textural class. The mineralogy of the top soil in the alluvium is 71% quartz and 27.7% albite (Na-
Feldspar). These soils can be placed in the Inceptisol, soil order, with Aquepts (Tukulu) and 
Ustepts (Oakleaf) as the suborders in Soil Taxonomy (Soil Survey Staff, 2003). 
On the deep eolian sand further away from the river, the dominant soil forms was Clovelly and 
Longlands, with a single Vilafontes, Constantia and Pinedene in between (Cv) (Soil classification 
working group, 1991). The textural class of the A and sub-soil horizons is sand with less than 7% 
silt and clay combined. The structure of these soil is single-grained. The mineralogy of the top soil 
in the eolian sand is 74.3% quartz and 23.8% feldspar. In Soil Taxonomy (Soil Survey Staff, 2003) 
these soils can be placed in the Entisols, soil order with Psamments as the suborder. 
 

3.2 Descriptive statistics of soil data 
The descriptive statistics of the different topsoil (0-20 cm) properties measured in the laboratory 
are given in Table 1. Soil pH and percentage carbon (C) are the two soil properties with the lowest 
standard deviation (SD) of 0.29 and 0.43 respectively. The highest standard deviation (SD) was 
found for exchangeable calcium (Ca) and the potassium (K) measured with the portable XRF. 
The skewness of the soil properties, clay percentage, sand percentage, carbon percentage, 
exchangeable calcium (Ca) and magnesium (Mg) and portable XRF potassium (K) and portable 
XRF uranium (U), range between -0.5 and 0.5 which is an indication that the data is fairly 
symmetrical (Oliver and Webster, 2014). The electrical conductivity (EC) of the soil with a 
skewness of 4.09, is an indication that the data is highly skewed (Oliver and Webster, 2014). For 
pH and XRF potassium (K), the coefficient of variation (CV) was relative small with values of 4.7% 
and 8.4%, indicating their distribution has a low variation relative to the mean. The percentage 
clay (CV = 57.6%), electrical conductivity (EC) (CV = 133.3%) and XRF uranium (U) (CV = 90.7%) 
had the highest coefficient of variation (CV), meaning they have a high variation relative to the 
mean. 
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Table 1: Descriptive statistics of the topsoil (0-20 cm) properties at the 48 sampling points. 

Soil Properties Mean Median Standard 
deviation (SD) 

Minimum Maximum Skewness Kurtosis Coefficient of 
variation (CV) 

Clay (%) 8.4 8.4 4.8 0.4 19.3 0.18 -0.56 57.6 

Silt (%) 11.7 11.3 6.3 1.1 32.8 0.90 1.66 53.9 

Sand (%) 80.0 79.4 10.6 50.0 96.1 -0.47 0.28 13.3 

pH H2O 6.25 6.27 0.29 5.34 6.90 -0.84 2.17 4.7 

EC (mS/m) 72 48 96 29 560 4.09 17.21 133.3 

C % (LOI) 0.88 1.03 0.43 0.18 1.69 -0.06 -1.13 49.5 

Exch. Ca (mg/kg) 1 027.9 1 126.0 592.7 151.0 2 211.5 0.04 -1.23 57.7 

Exch. Mg (mg/kg) 217.0 231.8 122.2 35.5 545.5 0.38 -0.06 56.3 

Exch. K (mg/kg) 125.7 129.8 69.2 0.5 392.0 0.82 3.48 55.1 

Exch. Na (mg/kg) 14.7 10.8 18.1 0.5 78.5 2.16 4.96 123.1 

P (mg/kg) 59.2 58.5 22.2 17.6 127.4 0.64 1.07 37.5 

XRF K (ppm) 12 254.5 12 319.8 1 024.7 9 416.2 14 160.2 -0.34 0.08 8.4 

XRF Th (ppm) 6.1 6.3 2.8 0.0 11.1 -0.65 0.50 45.7 

XRF U (ppm) 4.3 5.4 3.9 0.0 11.4 0.01 -1.59 90.7 

 

3.3 Descriptive statistics of aerial sensed data 
The descriptive statistics of the aerial sensed data is presented in Table 2. This includes the 
elevation and gamma-ray spectrometry data. The statistics of the top half show the data for the 
whole field (n = 4 762). For elevation the mean and median were nearly equivalent. The 11.7 
metre difference between the minimum (1 298.9 m) and maximum (1 310.6 m) is an indication 
that there is a major topographical variation. The field can be described as a flat upper part with 
a steep terrace leading to a lower relative flat area. The mean and median values for the gamma-
ray data for the two radioelements K and Th and the ratio’s for the different elements is almost 
equivalent, with only a slight difference for U and total count (TC). The total count (TC) data is not 
skewed (TC = -0.57). 
Table 2: Summary statistics of the aerial sensed data, including elevation (m) and gamma-ray spectrometry across the 
whole field (4 762) and at sampling sites (48). 

 Elevation 
(m) 

K 

(%) 

Th 

(ppm) 

U 

(ppm) 

TC 

(cps) 

K / Th K / U Th / K Th / U U / K U / Th 

n = 4 762            

Mean 1 305.1 7.0 14.2 6.9 951.0 0.5 1.2 2.0 2.4 1.0 0.5 

Median 1 305.0 7.1 14.5 5.7 972.4 0.5 1.2 2.0 2.5 0.8 0.4 

SD 2.13 0.32 0.65 3.07 95.15 0.01 0.36 0.05 0.74 0.55 0.26 

Minimum 1 298.9 4.7 9.5 3.4 743.6 0.4 0.2 1.7 0.4 0.5 0.2 

Maximum 1 310.6 7.3 15.2 27.2 1 109.3 0.6 2.1 2.3 4.3 5.8 2.6 

Skewness 0.19 -2.53 -2.06 2.16 -0.57 0.71 -0.57 0.08 -0.58 2.94 2.70 

CV 0.16 4.63 4.60 44.16 10.01 2.35 31.29 2.32 31.37 53.66 52.79 

            

n = 48            

Mean 1 305.2 7.0 14.2 7.3 948.1 0.5 1.1 2.0 2.3 1.1 0.5 
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Median 1 305.1 7.1 14.5 5.8 964.9 0.5 1.2 2.0 2.5 0.8 0.4 

SD 2.02 0.37 0.67 3.53 94.93 0.01 0.36 0.05 0.73 0.66 0.31 

Minimum 1 301.3 5.2 11.3 4.3 765.2 0.5 0.2 2.0 0.5 0.6 0.3 

Maximum 1 309.3 7.2 14.8 23.3 1 088.5 0.5 1.7 2.2 3.5 4.5 2.1 

Skewness 0.09 -3.03 -2.37 2.54 -0.51 -0.75 -0.64 0.99 -0.61 3.43 3.11 

CV 0.16 5.32 4.71 48.36 10.01 2.17 32.18 2.22 32.20 61.62 58.47 

Note: SD – standard deviation; CV – coefficient of variation. 

In the bottom part of Table 2, the descriptive statistics of the aerial sensed data at the sampling 
sites (n = 48) is showed. The descriptive statistics show that the data at the sampling sites and 
that collected across the whole field, is in general nearly the same. This is an indication that the 
sampling sites are a fair and reasonable representation of the data collected across the whole 
field. 
 

3.4 Pearson’s correlation of aerial sensed data 
The Pearson’s correlation coefficient (r) of the aerial sensed data can be seen in Table 3. The 
statistics in the top half is for the whole field (n = 4 762). Between the majority of the gamma-ray 
data there was a strong and significant correlation (P < 0.001). For the individual radioelements, 
the highest correlation was between Th and K (0.89) followed by Th and U (-0.88). The cross-
correlation between elevation and all four channels of the gamma-ray spectrometry was strongly 
correlated. The strongest correlation with elevation was between total count (-0.70), followed by 
Th (-0.51). 
Table 3: Pearson’s correlation coefficient (r) of the aerial sensed data, including elevation (m) and gamma-ray 
spectrometry across the whole field (4 762) and at sampling sites (48). 

 Elevation (m) K (%) Th (ppm) U (ppm) TC (cps) K / Th K / U Th / K Th / U U / K U / Th 

n = 4 762            

Elevation 1.00           

K -0.40*** 1.00          

Th -0.51*** 0.89*** 1.00         

U 0.46*** -0.87*** -0.88*** 1.00        

TC -0.70*** 0.51*** 0.62*** -0.59*** 1.00       

K / Th 0.21*** 0.25*** -0.22*** 0.01 -0.21*** 1.00      

K / U -0.50*** 0.78*** 0.80*** -0.92*** 0.66*** -0.03 1.00     

Th / K -0.20*** -0.29*** 0.19*** 0.04** 0.19*** -0.99*** -0.01 1.00    

Th / U -0.51*** 0.77*** 0.81*** -0.92*** 0.67*** -0.07*** 0.99*** 0.04** 1.00   

U / K 0.43*** -0.91*** -0.89*** 0.99*** -0.55*** -0.06*** -0.87*** 0.10*** -0.87*** 1.00  

U / Th 0.45*** -0.89*** -0.90*** 0.99*** -0.57*** 0.01 -0.88*** 0.03 -0.89*** 0.99*** 1.00 

            

n = 48            

Elevation 1.00           

K -0.49*** 1.00          

Th -0.56*** 0.92*** 1.00         

U 0.50*** -0.90*** -0.89*** 1.00        

TC -0.67*** 0.54*** 0.68*** -0.58*** 1.00       
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K / Th 0.01 0.52*** 0.15 -0.32* -0.14 1.00      

K / U -0.56*** 0.76*** 0.80*** -0.90*** 0.69*** 0.16 1.00     

Th / K 0.01 -0.54*** -0.18 0.35* 0.12 -0.99*** -0.19 1.00    

Th / U -0.57*** 0.75*** 0.81*** -0.90*** 0.71*** 0.12 0.99*** -0.14 1.00   

U / K 0.46*** -0.93*** -0.90*** 0.99*** -0.53*** -0.39** -0.84*** 0.42** -0.84*** 1.00  

U / Th 0.48*** -0.92*** -0.91*** 0.99*** -0.56*** -0.34* -0.86*** 0.37** -0.86*** 0.99*** 1.00 

Note: * P < 0.05; ** P < 0.01; *** P < 0.001. 

In the bottom half of Table 3 the Pearson’s correlation coefficient (r) for the aerial sensed data 
only at the sampling sites (n = 48) is shown. Like the data for the whole field, there was a strong 
and significant correlation (P < 0.001) between the majorities of the gamma-ray data at the 
sampling sites. The data for the sampling sites show a reflection of the data at the whole field. 
For the individual radioelements, again the highest correlation was between Th and K (0.92). This 
is followed by the correlation between K and U (-0.90). The cross-correlation between elevation 
and all four channels of the gamma-ray spectrometry show the same tendency with a strong 
correlation. The strongest correlation with elevation was with total count (-0.67), followed by Th (-
0.56). 
 

3.5 Pearson’s correlation of aerial sensed data with soil data 
In Table 4 the Pearson’s correlation coefficients between the topsoil (0 – 0.2 m) properties and 
the aerial sensed gamma-ray data and elevation is shown. The individual radioelements of the 
gamma-ray data significantly correlated with the topsoil particle size fractions of sand, silt and 
clay. The largest and statistically most significant (P < 0.001) correlation was between total count 
(TC) with clay (0.82) and sand (0.81). There was also a significant correlation between the 
individual radioelements with soil carbon (C) and the exchangeable nutrient elements calcium 
(Ca) and magnesium (Mg). Total count again (TC) gave the largest and most statistically 
significant (P < 0.001) correlations with C (0.76), Ca (0.77) and Mg (0.78). No significant 
correlation was found between the gamma-ray data with soil pH, EC and P. 
Table 4: Pearson’s correlation coefficient (r) between aerial sensed data, including elevation (m) and gamma-ray 
spectrometry and various topsoil (0 – 0.2 m) chemical and physical properties. 

 C 

(%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Exchangeable 

Ca 

(mg/kg) 

Mg 

(mg/kg) 

K 

(mg/kg) 

Elevation (m) -0.64*** 0.56*** -0.46*** -0.63*** -0.63*** -0.60*** -0.35* 

K (%) 0.56*** -0.54*** 0.46*** 0.58*** 0.54*** 0.52*** 0.42** 

Th (ppm) 0.60*** -0.58*** 0.49*** 0.63*** 0.58*** 0.56*** 0.41** 

U (ppm) -0.61*** 0.57*** -0.48*** -0.63*** -0.58*** -0.56*** -0.42** 

TC (cps) 0.76*** -0.81*** 0.73*** 0.82*** 0.77*** 0.78*** 0.38** 

K / Th 0.09 -0.08 0.08 0.08 0.07 0.07 0.17 

K / U 0.70*** -0.65*** 0.56*** 0.69*** 0.68*** 0.64*** 0.43** 

Th / K -0.11 0.10 -0.09 -0.10 -0.09 -0.09 -0.18 

Th / U 0.70*** -0.65*** 0.56*** 0.70*** 0.68*** 0.64*** 0.42** 

U / K -0.56*** 0.53*** -0.44** -0.59*** -0.53*** -0.52*** -0.41** 

U / Th -0.58** 0.54*** -0.45** -0.60*** -0.55*** -0.53*** -0.41** 

Note: * P < 0.05; ** P < 0.01; *** P < 0.001. 
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3.6 Spatial distribution of aerial sensed data 
The spatial distribution of the study field’s elevation is shown in Figure 1. At the south western 
side of the field the elevation was the highest (1 310.6 m) with the lowest (1 298.9 m) point in the 
north western side. There is quite a steep fall in elevation from the south west to the north east, 
in the form a terrace. The site can be described as having an upper south western part and a 
lower north eastern part. 

   
Figure 1: Spatial distribution of elevation data (m). 

The gamma-ray data’s spatial distribution is shown in Figure 2. In Figure 2a K(%) is shown, with 
the highest values (7.0-7.28 %) in the northern and eastern part covering the largest area. 
Intermediate K values (6.38-6.60 ppm) is found in the south western part with some spots in the 
eastern part. Thorium in Figure 2b follow the same trend as K, with the spatial distribution of U in 
Figure 2c with an inverse trend of K and Th. Total count as shown in Figure 2d have the lowest 
(760-840 cps) count in the south western part with the highest (1 000-1 100 cps) count running in 
the centre from north to south. 

a)                            b) 

                 
c)                                                                   d) 

                 
Figure 2: Spatial distribution of interpolated gamma-ray spectrometry data for a) potassium (K - %), b) thorium (Th – ppm), 
c) uranium (U – ppm) and total counts (TC – cps). 
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3.7 Spatial distribution of soil properties 
The spatial distribution of the various topsoil (0-0.2 m) properties is shown in Figure 3. The carbon 
content is shown in Figure 3a, with the lowest carbon content of 0.6% and less in the western half 
of the field. Figure 3b shows the clay percentage, with the highest clay (12-16%) in the northern 
and south eastern part of the field. The lowest clay (0-7%) was in the western part of the field. 
Figures 3c to 3e shows the Ca, Mg and K maps. The highest amounts of these element is found 
in the northern and south eastern parts of the field, with the lowest amounts in the western part 
of the field. The carbon, calcium, magnesium and potassium maps show the same tendency than 
the clay map, with the higher C, Ca, Mg and K correlated with the higher clay content. The amount 
of these elements is thus a function of the clay content of the soil (Weil & Brady, 2017). 

         
a)  b) 

         
c)  d) 

  
e) 
Figure 3: Spatial distribution of interpolated topsoil (0-0.2 m) a) carbon (%), b) clay (%), c) Ca (mg/kg), d) Mg (mg/kg) and e) 
K (mg/kg). 

 

3.8 Spatial soil property mapping with Digital Soil mapping methods 
Table 5 gives a comparison of results between the Cubist and Random Forest models for a 
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calibration with 50% (24 samples) and 75% (36 samples) of the data. The soil properties with 
coefficient of determination (R2) and concordance values of 0.5 and higher are, carbon (C), sand, 
silt, clay, calcium (Ca) and magnesium (Mg). For these soil properties, the gamma-ray covariates 
alone gives by far better values than the terrain and spectral covariates alone. The comparison 
between gamma-ray covariates alone and all the covariates together, the combination of all the 
covariates gave an equal or slight better value. For carbon (C) with the cubist model, the gamma-
ray covariates alone gave even higher values than the combination of all the covariates together. 
The gamma-ray data thus predict the above soil properties by far better than the terrain and 
spectral data. 
Table 5: Comparison between the Cubist and Random Forest models for the Digital Soil Mapping (DSM) of the soil 
properties with Terrain and Spectral covariates, Gamma-ray covariates and the combination of both. The modelling was 
done with 50% (24 samples) and 75% (36 samples) of the data for calibration. 

Soil 
property 

Model Quality 
measures 

Terrain and 
Spectral Gamma-ray All data 

   50% 75% 50% 75% 50% 75% 

C Cubist R2 0.42 -0.08 0.59 0.66 0.09 0.30 

  Concordance 0.62 0.10 0.71 0.73 0.35 0.55 

 Random Forest R2 0.52 0.14 0.61 0.80 0.76 0.18 

  Concordance 0.63 0.29 0.72 0.82 0.76 0.41 

Sand Cubist R2 0.09 0.12 0.64 0.59 0.64 0.40 

  Concordance 0.34 0.41 0.76 0.68 0.76 0.59 

 Random Forest R2 0.29 0.11 0.45 0.55 0.28 0.65 

  Concordance 0.53 0.27 0.64 0.67 0.45 0.69 

Silt Cubist R2 0.27 0.19 0.28 0.40 0.29 0.59 

  Concordance 0.52 0.40 0.45 0.59 0.46 0.59 

 Random Forest R2 0.16 0.50 0.23 0.54 0.50 0.72 

  Concordance 0.37 0.55 0.40 0.60 0.53 0.64 

Clay Cubist R2 0.32 0.42 0.67 0.57 0.61 0.74 

  Concordance 0.53 0.61 0.78 0.65 0.70 0.80 

 Random Forest R2 0.40 0.03 0.61 0.53 0.64 0.68 

  Concordance 0.59 0.21 0.68 0.69 0.60 0.74 

Ca Cubist R2 0.34 0.47 0.59 0.81 0.69 0.33 

  Concordance 0.58 0.66 0.71 0.82 0.76 0.43 

 Random Forest R2 0.44 0.08 0.55 0.32 0.67 0.46 

  Concordance 0.60 0.35 0.71 0.55 0.73 0.54 

Mg Cubist R2 0.04 0.55 0.62 0.67 0.09 0.38 

  Concordance 0.26 0.68 0.72 0.72 0.32 0.59 

 Random Forest R2 0.18 0.63 0.32 0.61 0.56 0.53 

  Concordance 0.39 0.73 0.53 0.70 0.63 0.63 

 

3.9 Soil type mapping with Multinomial Logistic Regression (MNLR) 
Table 6 shows the comparison of the accuracy and Kappa coefficients for the predictions obtained 
with the Multinominal Logistic Regression (MNLR) machine learning algorithm for the validation 
data. This is for all the covariate data, gamma-ray data and terrain and spectral covariate data, 
with 50% and 75% as training dataset. 
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Table 6: Comparison of the accuracy and Kappa values for the predictions of the validation data. 

Covariate data Accuracy (%) Kappa coefficient Number of mapping units 

All 75% 67 0.41 3 

50% 71 0.42 2 

Gamma 75% 92 0.81 3 

50% 96 0.89 3 

Terrain & Spectral 75% 67 0.45 3 

50% 55 0.28 3 

 
The best accuracy (92% and 96%) and Kappa coefficients (0.81 and 0.89) was obtained with the 
gamma-ray covariate data alone. The other covariate data used gave accuracies from 55% to 
71% and Kappa coefficients of 0.28 to 0.45. According to Landis and Koch (1977), the Kappa 
coefficients of the gamma-ray data can be interpreted as an almost perfect agreement, while the 
rest is a fair to moderate agreement. The gamma-ray data thus map the soil types better than all 
the data used together and the terrain and spectral data used alone. Figure 4 show the soil maps 
obtained from the gamma-ray covariate data (4a and 4b) with the Multinominal Logistic 
Regression (MNLR) machine learning algorithm compared to the traditional soil map (4c). 

    
a)                                                                         b) 

  
c) 
Figure 4: Soil type maps of a) gamma 75% training data, b) gamma 50% training data and c) traditional soil map. 
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4. Conclusions 
The digital soil mapping results (Table 5) and the results of the Pearson’s correlation of the aerial 
gamma-ray sensed with the soil properties (Table 4), show the same results. With both, the 
gamma-ray data correlate with soil carbon (C), sand, silt, clay, calcium (Ca) and magnesium (Mg). 
Since the gamma-ray data is a reflection of the soil mineralogy, the soil textural fractions is 
predicted by the gamma-ray data. The soil carbon (C), calcium (Ca) and magnesium (Mg) is a 
function of the clay content of the soil. This conclude that aerial sensed gamma-ray spectrometry 
data can successfully be used to directly estimate and predict the soil textural properties and 
indirectly the soil chemical properties that is related to the soil texture. Thus gamma-ray 
spectroscopy improve and can successfully be used to map soil properties for precision 
agriculture. This is proof from the correlations between the gamma data and soil properties. 
The use of gamma-ray data in digital soil mapping for soil type maps proves to be far better than 
the terrain and spectral data for soil type mapping. With gamma data, zones of soil types can be 
better mapped than conventional soil type mapping. 
In this study the gamma-ray data was successful in predicting the soil particle fractions of sand, 
silt and clay, as well as the soil carbon (C), calcium (Ca) and magnesium (Mg), and with the 
mapping of soil types. Gamma-ray data can be used to map soil properties and soil types 
accurately, with 50% of the conventional soil samples and observations. This is a saving in both 
time and money. More research need to be done in bigger areas in South Africa to test the concept 
in the majority of crop production areas. 
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