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Abstract.  
To support future in situ/on-the-go applications using X-ray fluorescence (XRF) sensors for soil 
mapping, this study aimed at evaluating the XRF performance for predicting organic matter (OM), 
base saturation (V), and exchangeable (ex-) Mg, using a reduced analysis time (e.g., 4 s) in soil 
samples with different moisture contents. These attributes are considered secondary for XRF 
prediction because they do not present emission lines in the XRF spectrum. Ninety-nine soil 
samples acquired in two Brazilian agricultural fields were used. Soil samples with moisture 
content of 0, 5, 10, 15, 20, and 25 wt.% were measured by XRF under 4 s of dwell time. The 
results revealed that, despite the short dwell time, it was possible to obtain satisfactory predictions 
[residual prediction deviation (RPD) > 1.40] of V and ex-Mg in soil samples with up to 15 wt.% of 
moisture content. Satisfactory predictions of V were also possible with 20 and 25 wt.% of moisture 
content. Conversely, satisfactory predictions of OM were only possible in dried samples, yielding 
RPD of 1.60. Notwithstanding these promising results, for all studied attributes, the predictive 
performance gradually decreased as a function of water content in the soil. Nevertheless, we 
emphasize that the previously mentioned performance was obtained without the application of 
methods to mitigate the effect of moisture in spectral data [e.g., external parameter 
orthogonalization (EPO)]. Thus, methods to correct external effects on XRF data may lead to 
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more accurate results, which highlights the necessity of further research to find the best method 
for mitigating the effect of soil moisture content in XRF spectra. This study emphasizes the 
potential of XRF for soil mapping in in situ analysis, being pioneering in showing that with a 
reduced scanning time it is possible to obtain satisfactory prediction performances for OM, V, and 
ex-Mg in wet samples. 
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Introduction 
The search for a fast, versatile and accurate method for soil fertility analysis is a prominent topic 
within precision agriculture since its conception (Khosla & Alley, 1999). Several sensing 
techniques have been proposed and tested for practical soil fertility assessments in order to 
increase the spatial density of analysis, e.g., apparent electrical conductivity sensors, diffuse 
reflectance spectroscopy in the visible and infrared (vis-NIR) sensors, among others (Viscarra 
Rossel et al., 2011).  
The application of X-ray fluorescence (XRF) sensors for soil fertility analysis has evolved rapidly 
in recent years (Lima et al., 2019; Nawar et al., 2019; Tavares et al., 2020). The technique 
characterizes a wide range of soil elemental composition (e.g., Ti, Fe, Cu, Ca, K, Si, among 
others), providing complementary information to other more common proximal soil sensing (PSS) 
techniques, such as mineralogical and organic constituents offered by visible and near infrared 
diffuse reflectance spectroscopy (VNIR) (O’Rourke et al., 2016). The characterization of the 
chemical elements present in the sample provided by XRF allows, in some cases, the inference 
of properties without direct spectral responses (e.g., pH, organic matter (OM), base saturation 
(V), and exchangeable (ex-) Mg) (Weindorf & Chakraborty, 2020), i.e., designated as secondary 
soil properties. 
XRF sensors have the potential to evolve towards applications directly in the field, since their 
outputs are less affected by soil moisture than techniques traditionally applied in situ (e.g., vis-
NIR sensors), and it is also quite flexible regarding sample preparation (Tavares et al., 2019). 
Although some studies have already reported applications of XRF directly in the field for soil 
evaluation (Weindorf et al., 2012; Stockmann et al., 2016), the scanning time typically used in 
these applications is around 30 to 90 s, which is quite contrasting when compared to the analysis 
time of other PSS techniques. For example, both apparent electrical conductivity (ECa) and vis-
NIR techniques have an almost instantaneous scanning time (one second per scanning) that 
allows on-the-go data acquisitions with high spatial density (e.g., 250 data points ha-1 at operating 
speeds around 4 m s-1) (Molin & Tavares et al., 2019). An example closer to what would be 
realized for on-the-go application using XRF is the ion-selective electrodes (ISE) used in mobile 
platforms, since the ISE needs a longer dwell time in contact with the sample to stabilize its 
reading (e.g., approximately 10 to 15 s) (Adamchuk et al., 2007). However, to the best of our 
knowledge, no work has explored XRF scanning times below 30 s for soil fertility analysis.  
Another challenge of in situ analysis using soils sensors is to minimize the soil moisture effect 
that compromise part of the sensors’ performance (Ge et al., 2005; Kuang and Mouazen, 2013). 
Strategies for calibrating of predictive models that are insensitive to the effect of soil moisture has 
received a great attention for in situ analysis performed with vis-NIR sensors (Minasny et al., 
2011; Kuang and Mouazen et al., 2013; Nawar et al., 2020). However, there is still a lack of 
information on the soil moisture effect in XRF data, especially for data collected with reduced 
scanning time. In this context, to support future in situ/on-the-go applications using XRF sensors, 
the present study aimed at evaluating the trade-off among the XRF’s performance and the 
increment of soil moisture in soil fertility predictions. In addition, this evaluation was performed 
using a reduced scanning time, simulating a possible scenario of on-the-go data acquisition.  
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Material and Methods 

Soil samples 
The samples used in this study belong to the soil sample bank of the Precision Agriculture 
Laboratory (LAP) from Luiz de Queiroz College of Agriculture, University of São Paulo. They were 
collected from 0–20 cm depth and stored after being air-dried, ground and sieved (≤ 2 mm). The 
samples used in this work are from two different fields that have been under active agricultural 
production. Field 1 is located in the Southeast Region of Brazil, in the municipality of Piracicaba, 
State of São Paulo. Its soil is classified as Lixisol with a clayey texture and high nutrient variability. 
Field 2 is situated in Brazil’s Midwest Region, in the municipality of Campo Novo do Parecis, State 
of Mato Grosso. Its soil is classified as Ferralsol, with a texture varying between sandy loam and 
sandy clay loam. A set of 101 soil samples were selected for the present study, being 57 soil 
samples from Field 1 and 44 from Field 2. The chemical analysis results of the LAP’s soil sample 
bank were used to choose samples with wide ranges of variability of key fertility attributes in both 
study fields. After dataset selection, the samples were again subjected to laboratory analyses, as 
described below, which provided the results of the reference analyses used in this work. 

Reference analyses 
From each sample, an aliquot of 90 g was sent to the laboratory for regular soil fertility tests. OM 
concentration was determined via oxidation with potassium dichromate solution. Extractable 
nutrients were determined via ion exchange resin extraction. The soil potential acidity (H + Al) 
was quantified via pH in buffer solution method (SMP) and used to calculate the cation exchange 
capacity (CEC), which corresponds to the sum of soil potential acidity and sum of bases (ex-Ca 
+ ex-Mg + ex-K). V was calculated by the ratio between the sum of bases and CEC. 

XRF measurements with reduced scanning time 
A portable device Tracer III-SD model (Bruker AXS, Madison, EUA) was used for XRF data 
acquisition. This instrument has a 4 W Rh X-ray tube and a Peltier-cooled Silicon Drift Detector 
with 2048 channels. The X-ray tube was configured for voltage and current of 35 kV and 7 μA, 
respectively (Tavares et al., 2020). No filter was used and the measurements performed under 
atmospheric pressure. A scanning time of just 4 s was applied in this study. Three readings were 
taken from each soil specimen at three different spots, and these were then averaged for 
subsequent analysis.   
The acquired spectra were normalized by the detector live time and evaluated in counts of 
photons per second (cps). Considering the area under each peak, 10 spectral lines (K-lines of Al, 
Si, K, Ca, Ti, Mn, Fe, Ni, and Cu, and the scattering peak Rh-Kα Compton) were selected to be 
used as explanatory variables, following the criteria recommended by Tavares et al. (2020). 

XRF data modeling  
The set comprising 101 soil samples was divided into two groups, one for calibration (with 68 
samples) and the other for validation (with 33 samples) of the predictive models, procedure 
performed using the Kennard–Stone algorithm (Kennard and Stone, 1969) executed on the soil 
fertility attributes (Y-variables). Predictive models were built with multiple linear regression using 
the 10 XRF spectral lines as X-variables. For evaluating the effect of moisture content on the 
predictions, predictive models were calibrated (using the calibration set) on samples with 0% of 
moisture content and validated (using the validation set) on samples with moisture content of 0, 
5, 10, 15, 20, and 25 wt.%. The samples were moistened with the aid of a pipette. All the 
calibrations and validations were performed using the Unscrambler software, version 10.5.1 
(Camo AS, Oslo, Norway).  
The prediction performance was evaluated through the root mean square error (RMSE) and the 
residual prediction deviation (RPD), the latter was calculated as the ratio between the standard 
deviation (SD) of the laboratory measured soil property of interest and the RMSE in the prediction. 
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Based on the RPD values, the prediction quality of models was classified into four classes 
adapted from Chang et al. (2001): poor models (RPD < 1.40), reasonable models (1.40 ≤ RPD < 
2.00), good models (2.00 ≤ RPD < 3.00), and excellent models (RPD ≥ 3.00). 

Results and Discussion 

Laboratory Measured Soil Properties  
The descriptive statistics of the fertility attributes for the calibration and validation datasets are 
shown in Table 1. The range and SD of soil attributes in the calibration set are close to those in 
the validation set, which is expected since we applied Kennard Stone method in sample split to 
avoid undesirable influences on the prediction accuracy that are not sensor-related (Stenberg et 
al., 2010). 
Strong correlations exist between ex-Ca and the contents of V (r = 0.92) and ex-Mg (r = 0.84) 
(Table 2). These correlations suggest that if total and extractable Ca contents are correlated, 
indirect predictions of V and ex-Mg can occur using the Ca-Kα. Correlations of OM with the other 
elements ranged from 0.44 to 0.62. 
 
Table 1. Descriptive statistics of organic matter (OM), base saturation (V) and exchangeable (ex-) Mg for the 

calibration and validation dataset. 
  OM   V   ex-Mg 
 Cal set Val set  Cal set Val set  Cal set Val set 

Min 14.00 18.00  19.00 28.00  3.00 3.00 
Mean 24.78 26.62  64.99 64.15  18.06 17.50 
Max 37.00 35.00  92.00 91.00  54.00 47.00 
SD 6.13 5.48  21.96 23.42  12.58 12.81 

CV (%) 24.72 20.58   33.80 36.51   69.65 73.22 
The minimum (min), maximum (max), mean, and standard deviation (SD) values of OM content were given in g dm−3 
and, in mmolc dm−3, for V and ex-Mg. The number of samples (n) used for the calibration (Cal) and validation (Val) 
sets were, respectively, 68 and 34. 

 
Table 2. Correlation matrix of organic matter (OM), base saturation (V), exchangeable (ex-) Mg, and ex-Ca. 

  OM¹ V3 ex-Ca4 ex-Mg4 
OM 1.00 0.62* 0.55* 0.44* 
V  1.00 0.92* 0.84* 

ex-Ca   1.00 0.93* 
ex-Mg       1.00 

Significant correlation at the probability level of 0.01 were indicated with an 
“*”; the correlations were presented on grayscale highlighting the strongest 
values. 

Effect of moisture content on XRF data and its prediction performance  
Figure 1 shows that the higher the moisture content in the soil sample, the lower is the intensity 
of its XRF lines. However, this behavior is inverted for the scattering peaks (Compton and 
Thomson scattering of Rh X-ray tube), which increase its intensity as the amount of water in the 
sample increases. This behavior occurs because the fluorescence lines are attenuated in the 
presence of water, while the scattering peaks are inversely proportional to the average atomic 
number of the sample, i.e., as H and O increase (present in H2O molecule), the average atomic 
number of the sample decreases. 
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Fig 1. X-ray fluorescence emission of a dried soil sample (0%) and after increasing its gravimetric moisture 
content by 5, 10, 15, 20, and 25 %.  

 

 

Fig 2. Effect of soil moisture increment on the performance of XRF to predict OM (A, D). V (B, E), and ex-Mg 
(C, F).  sensors for predicting fertility attributes. The labels in graphs A, B, and C correspond to the increase 
in RMSE (in percentage) compared to the RMSE obtained on dry samples (0% of moisture content). The red 

dashed line indicates a RPD of 1.4, values below this threshold indicate poor performance. 
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Regarding the prediction of fertility attributes using the XRF sensor, it is evident the reduction of 
its predictive performance as the moisture content increases (Fig. 2), which occurred for all 
studied soil attributes. The prediction error of the XRF sensor increased between 29 and 234% in 
the second increment of water (samples with 10% of moisture content), reaching an increase 
between 87 and 491% in samples with 25% of moisture content. OM was the attribute that most 
lost performance when increasing the water content, while the V was the one that least lost 
performance. Despite the loss of performance of the XRF sensor when increasing the soil 
moisture content, our results shown that it is possible to reach satisfactory prediction 
performances (RPD ≥ 1.40) for V, at all moisture conditions, and for ex-Mg up to 15% of moisture 
content (Fig. 2). The emission lines that most contributed to each predictive model are shown in 
Figure 3. 

 

Fig 3. Importance of variables for predictive models of organic matter (OM), base saturation (V) and 
exchangeable (ex-) Mg.  

 

Unlike laboratory measurements that are mainly conducted on dry and sieved samples, sensors 
applied in field conditions need to deal with external factors (e.g., soil moisture, soil roughness, 
etc) that influence sensors’ output (Horta et al., 2015, Mouazen and Al-Asadi, 2018). Soil moisture 
is one of the most studied external factor due to its marked influence on sensor's performance 
(Angelopoulou et al., 2020). Regarding the moisture effect on XRF sensor’s performance for 
fertility analysis, our results showed that predictive models calibrated on dry samples can be 
satisfactorily replicated on wet samples, especially for some specific attributes (e.g., V in our 
case). Nevertheless, it was observed that indeed there is a loss of performance when increasing 
the water content in the soil. So, in cases where it is necessary to maintain the prediction 
accuracy, methods adopted to minimize external effects such as external parameter 
orthogonalization (EPO) (Roger et al., 2003) and direct standardization method (Wang et al., 
1995) should be considered. Although the abovementioned methods have shown promising 
results for vis-NIR sensors providing moisture-insensitive predictions of soil attributes (Minasny 
et al., 2011; Kuang and Mouazen et al., 2013; Nawar et al., 2020), they have not yet been explored 
for XRF, which should be encouraged in future research. In addition, studies applying XRF 
sensors directly in the field are also necessary in order to consider the influence of other factors, 
such as soil roughness, ambient temperature, residues (e.g., stones and straw), and some 
movement during spectral acquisition, which can also interfere in situ measurements 
(Angelopoulou et al., 2020). 

Conclusion 
The XRF sensor gradually reduced its predictive performance by increasing the water level (from 
0 to 25 wt.%) in the soil. Despite this, our results shown that it is possible to reach satisfactory 
prediction performances (RPD ≥ 1.40) for base saturation (V), at all evaluated moisture 
conditions, and for exchangeable (ex-) Mg, up to 15% of moisture content. Unlike the other 
attributes, organic matter (OM) predictions were not possible on wet soils when using predictive 
models calibrated on dry soils. 
The observed results emphasize the potential of XRF for in situ analysis of soil fertility attributes, 
since with a reduced scanning time (e.g., 4 s) it is possible to obtain satisfactory prediction 
performances in wet samples. Furthermore, our results encourage future research to find the best 
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method for mitigating the effect of soil moisture content in XRF spectra. 
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