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Abstract.  
Currently estimating crop water requirements are achieved through the FAO-56 model. 
Models that rely on spectral vegetation indices (SVIs) derived from optical remote sensing 
became a reliable source of real-time crop coefficient estimations. While SVI-based crop 
coefficients (Kc) are more accurate in estimating plant water demands, they are less adequate 
for water status estimation. The goal of this study is to leverage satellite remote sensing data 
to determine Target Development Curves (TDCs) for the detection of unbalanced water status 
in maize fields. The first step to achieving this goal is to enhance the sensitivity of satellite 
based SVIs to water stress. Spectral, spatial, and temporal vegetation indices and their 
combinations based on Sentinel-2 images were generated for 215 commercial maize fields 
in Israel to identify indices with high sensitivity to stress that affected yield in early and peak 
growth periods. Average NDVI spectral time series grouped by yield levels showed that fields 
with low yield had lower NDVI values than those with high yield. Yet, the relative differences 
were low (8%), and they were observed around 30 days after sowing (DAS) with no 
differences in the peak period. The average angle at the near-infrared (ANIR) time series 
showed higher values for the low yield group with a relative difference of 18%. The spatio-
spectral index, the NDVI-CV, i.e., its coefficient of variance (CV) was advantageous over the 
NDVI as the relative differences were higher (35%) and they were observed as early as 20 
DAS. When a temporal index was added, i.e., the area under the curve of the NDVI-STD or 
ANIR-STD, differences were further enhanced and occurred also in the peak periods (60% 
and 35% at 20 and 65 DAS, respectively). Random forest (RF) for yield classification using 
the 30 most important indices obtained 0.67-0.82 overall accuracy for the calibration set for 4 
time periods between 20-70 DAS. Additionally, the RF analysis has shown that combined 
indices or the temporal indices obtained the highest importance ranking and that the SWIR 
range was the most important in three selected DAS. The results show that a combination of 
spectral, spatial, and temporal indices may enhance the sensitivity of multi-spectral satellite 
images to water stress and may be used to further develop a library of TDCs based on them.  
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1 Introduction 
Water stress detection in fields is important to avoid yield loss and to promote optimal plant 
growth, yield quality, and yield stability. Climate change and water scarcity result in a challenge 
to find better ways for water management to increase irrigation water use efficiency (IWUE) thus, 
early water stress detection in fields is critical for field management and can aid policy-making for 
irrigation (Sagan et al., 2019). Presently, in extensive agricultural areas around the world, 
irrigation amounts are not estimated by direct measures of crop water requirement but by the ETc 

FAO-56 model which provides guidelines for computing crop water requirements (Allen, 2000). 
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The model uses atmospheric evaporative demand together with calendar crop coefficients. 
Calendar crop coefficients may not adequately represent the actual phenological stage of a 
specific field in a specific year. Models that rely on spectral vegetation indices (SVIs) derived from 
optical remote sensing became a reliable source of so-called real-time crop coefficient estimation 
(Beeri et al., 2019; Kaplan et al., 2021; Rozenstein et al., 2018). These models are simple and 
easy to use but they suffer from several limitations. They assume normal crop development and 
thus do not account for plant water status which may lead to undesired positive feedback. With 
the aid of plant water status estimations, a water status coefficient can be added to the irrigation 
amounts thus overcoming these limitations. Over the past four decades, remote sensing of 
vegetation has focused on the optical-reflective range of the electromagnetic spectrum with 
multispectral sensors at the spaceborne level like Sentinel-2 (S-2) that offer different spatial and 
temporal resolutions of SVIs. Based on their indirect relationships to plant physiological and 
structural parameters such as canopy water content and fractional vegetation cover, SVIs are 
sensitive to a certain extent to plant water status. The spectral characteristics of water can be 
used to quantify the water content in the leaves. Short-wavelength infra-red (SWIR) bands and 
indices from multispectral airborne imagery were found to be correlated with plant water-related 
parameters and were important in estimating Fuel Moisture Content (FMC), Leaf Mass per Area 
(LMA), and Foliar Biomass (FB) (Casas et al., 2014). SVIs related to chlorophyll or leaf water 
content are related to late plant responses which tend to arise with visible symptoms hence their 
usage for pre-visual water-stress detection in crops is limited. SVIs reach saturation at peak 
growth stages and are not sensitive to further plant development. When reaching saturation, the 
monitoring of the plant is related to the identification of productive development and not the growth 
development. An alternative approach to detecting unbalanced water status is the use of Target 
Development Curves (TDCs). The TDCs serve as benchmarks for determining whether the crop 
is developing at an acceptable rate (i.e., on or off-target) and whether the crop is progressing 
towards maturity in an early and efficient manner (timing of physiological cutout). This research 
aims to leverage big remote satellite sensing data to determine TDCs for the detection of 
unbalanced water status in maize fields. This will allow us to extract water status coefficients and 
overcome the problems of the inability of assessing water stress at the peak growth stage due to 
the saturation of multispectral indices and the inability to assess stress before irreversible crop 
damage. The specific objectives of this study were: (a) to develop spatial and temporal indices as 
well as indices that combine spectral, spatial, and temporal features for early detection of plant 
water status-based S-2 images. (b) to build TDCs for Zea mays L. grown in Israel by selected 
remotely-sensed indices and (c) to examine whether combined indices based on spectral, spatial, 
and temporal have an advantage over the use of discrete spectral index values for the detection 
of canopy water stress in different growth stages and quantify it. 

 

2 Methods 
The general approach of this study was to use existing information about commercial fields and 
to identify fields with and without stress by their yield levels. Since no direct information about 
stress was available, the fields were grouped into three yield levels: high, medium, and low. The 
assumption is that the fields with high yield levels represent the best practice and their average 
SVI time series can be used to define TDCs, while fields with low yield levels represent fields that 
suffered from stress. Thus, indices that will show relatively high differences between fields with 
high and low yield levels will be adequate to be used for SVI-TDCs. The research methodology 
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workflow is presented in Figure 1. 

 
Fig 1 Research methodology workflow divided into 3 phases: a) data collection, b) data analysis, c) decision support 

system 

 

2.1 Data sources and collections 

2.1.1 Data collection from maize fields in Israel  

Field data from 215 maize fields were collected from farmers in Israel during four growing seasons 
(2018- 2021) from the following farms: Tzora (31°46' N, 34°56' E), Tzabar Kama (31°45' N, 34°50' 
E), Yavne (31°46' N, 34°44' E), Bnei Darom (31°49' N, 34°42' E), Afek (32°50' N, 35°07' E), Heffer 
valley (32°22 N, 34°56' E) and Emek (32°38' N, 35°10' E). The data included field location and 
boundaries, maize species, agrotechnical operations, sowing and harvesting dates, irrigation 
amounts, and crop yields. QGIS software was used to create geographic layers of the fields that 
were uploaded as feature collections to the Google Earth Engine platform (GEE). The 215 field 
collection was split into three groups: the fields from 2019 (n=61) were used for qualitative 
comparison between indices by their ability to distinguish between fields with low and high yields; 
the 2018-2020 fields (n=163) were used to quantitively rank indices by their importance in 
distinguishing between fields with high and low yields and the 2021 fields (n=52) will be used later 
on for validation of the decision support system. 

2.1.2 Satellite data 

To monitor the collection of fields, spectral data of the crops was acquired by the S-2 mission that 
includes two identical multispectral satellites 2A and 2B which provide images of the earth with 5-
day intervals. The satellite sensor includes 13 bands with 10 to 60m ground/spatial resolution 
covering visible, near-infra-red (NIR), and SWIR wavebands. Image collection for each field was 
obtained from the GEE platform according to the crop growing season in each area. GEE is a 
free cloud-based platform for geospatial analysis that stores many satellites imagery catalogs and 
geospatial datasets with planetary-scale analysis capabilities.  
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2.2 Data analysis 

2.2.1 Satellite multispectral time-series for maize fields in Israel  

From the S-2 images, time series of nine SVIs from different spectral ranges were calculated for 
each field along the growing season (Table 1). Using the sowing data received from the farmers 
each image date was transformed to days after sowing (DAS) to allow synchronization between 
phenological stages of the different fields. 
Table 1. Spectral indices used to calculate Spatial and Temporal indices. 

  

* represents the indices left after filtering. 

 

2.2.2 Enhanced SVIs  

Based on the spectral data, spatial, temporal, and combined indices were calculated to exploit 
the spatial and temporal information in the satellite images and explore whether it can enhance 
the sensitivity of the satellite images to water stress. The spatial indices included: the standard 
deviation (STD) of the whole field, mean STD, and coefficient of variation (CV) of 3 by 3 kernels. 
The temporal indices included: slopes, the area under curves (AUC) between two images (ti and 
ti+1, and between ti and ti+2), and cumulative AUC. Finally, temporal indices were calculated on 
the spatial indices to produce spatio-temporal combined indices. In total 144 indices were 
produced for each field and were combined with the field data from the farmers to assemble a 
database that included all data collected on the fields. The calculation workflow of the indices is 
presented in Figure 2. 

General 
Spectral range 

Index Formula Sentinel-2 formula Reference 

* RGB 

Visual 
atmospheric 

resistance index 
(VARI) 

(Green - Red)/ (Green + Red - 
Blue) (B3-B4)/(B3+B4-B2) (Gitelson et 

al., 2002) 

RGB 
Green/Red 

Vegetation Index 
(GRVI) 

(Green - Red)/(Green + Red) (B3-B4)/(B3+B4) (Tucker, 
1979) 

* Red edge 
Red-Edge 

Inflection Point 
(REIP) 

700 + 40 * (((Red + Red 
edge)/2)-Red edge) / (Red edge 

- Red edge) 
 

700+40*(((B4+B7)/2)-B5)/(B6-B5) 
 

(Guyot et 
al., 1988) 

* Visual-NIR 
Enhanced 

vegetation index 
(EVI) 

2.5 * ((NIR - RED) / (NIR + 6 * 
RED - 7.5 * BLUE + 1)) 

2.5 * ((B8 - B4) / (B8 + 6 * B4 - 7.5 
* B2 + 1)) 

 

(Huete et 
al., 2002) 

* Visual-NIR 

Normalized 
difference 

vegetation index 
(NDVI) 

(NIR - Red) / (NIR + Red) 
(B8-B4)/(B8+B4) 

 
 

(Tucker, 
1979) 

Visual-NIR 

Green Normalized 
Difference 

Vegetation Index 
(GNDVI) 

(NIR – Green) / (NIR + Green) (B8-B3)/(B8+B3) 
 

(Gitelson & 
Merzlyak, 

1996) 

* SWIR and 
SWIR-NIR 

The angle at near-
infrared (ANIR) 

𝑐𝑜𝑠!"[(𝑎# + 𝑏# − 𝑐1#)	/	2 ∗ 𝑎 ∗ 𝑏] 𝑐𝑜𝑠!"[(𝑎# + 𝑏# − 𝑐1#)/2 ∗ 𝑎 ∗ 𝑏] 
 

(Khanna et 
al., 2007) 

SWIR and SWIR-
NIR 

Normalized 
Difference Water 

Index (NDWI) 

(NIR – SWIR) / (NIR + SWIR) (B8-B11)/(B8+B11) (Gao, 1996) 

* SWIR and 
SWIR-NIR 

Shortwave angle 
slope index (SASI) 

cos-1[(a2+ b2- c22) / 2 * a * b] * 
[SWIR-NIR] 

 

cos-1[(a2+b2-c22)/2*a*b]*[B12-B8] 
 

(Khanna et 
al., 2007) 
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Fig 2 Spatial, temporal, and combined indices calculation flow chart. The number in the box indicates the number of 

indices that were calculated 

 

2.2.3 Indices filtering and ranking  

Index filtering was firstly performed to avoid co-linearity. The filtering was done by examining the 
correlations between indices in the overall database (all fields along the whole growing season). 
Wherever a linear correlation was obtained higher than r = 0.9, the selection for keeping an index 
was made by the index type and range according to the following priority (in descending order): 
SWIR range (because it is more directly related to water content), the Red Edge range, NIR, and 
Reed Green Blue (RGB) range. After the first filtering of the spectral type, spatial, temporal, and 
combined types were examined in the same process as the spectral type. The filtering process 
resulted in filtering three spectral indices which gave a total of 96 indices for each field. The six 
indices that were left after filtering are marked with an asterisk in Table 1. 

The next step was to rank indices by their importance in distinguishing between fields with high 
and low yields. Random Forest (RF) classification was applied using all indices in four selected 
DAS from early to peak vegetative growth stages. RF classification outputs the importance of 
each index. For each selected DAS the 30 indices with the highest importance were selected for 
the second classification and the final ranking. Finally, the importance of the indices in each 
selected DAS was summed by index type (spectral, spatial, temporal, or combined) and spectral 
range (Table 1) to explore the relative contribution of each type and range. 
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3 Results and Discussion 
Figure 3 shows the average Normalized difference vegetation index (NDVI) and the average 
angle at the near-infrared (ANIR) time series grouped by yield level along the growing season of 
2019. On average, as expected, fields with low yield had lower NDVI values than those with high 
yield. Yet, they were observed only from 30 DAS and the relative differences were low (around 
8%). Average ANIR time-series showed that fields with low yield had higher ANIR values than 
those with high yield, suggesting they had lower water content. Yet, they were observed only from 
25 DAS and the relative differences were low (around 10%) which means they probably had lower 
water content levels. In both cases, the differences decrease in the peak growth stage apparently 
as a result of saturation.  

Figure 4 shows the NDVI-CV and ANIR-CV time series grouped by yield levels along the growing 
season of 2019. In both cases, the spatial index shows enhanced differences in the early stages 
and sometimes in the growth peak stage. NDVI-CV shows that on average fields with low yields 
are associated with higher levels of variation. Relative differences of around 35% are noticeable 
in 20 and 65 DAS. This result is in accordance with the perception that a higher level of stress is 
associated with a higher level of variation. ANIR-CV shows differences of around 30% in 20 and 
65 DAS but with a shifting trend that cannot be explained at this stage of the research. 

Fig 3 NDVI and ANIR 2019 fields averaged time-series grouped by yield level. The averages are based on all fields from 
2019. 

Fig 4 The average time-series of NDVI-CV and ANIR-CV grouped by yield level. The averages are based on all fields from 
2019. 
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Figure 5 shows the AUC of the NDVI-STD and the AUC of the ANIR-STD time series grouped by 
yield levels along the growing season of 2019. When adding a temporal dimension to the spatial 
dimension (combined index), the differences are noticeable in both the early and peak growth 
stages. On average, fields with low yield had higher AUC-NDVI-STD values than those with high 
yield with a 60% relative difference at 20 DAS and 35% at 65 DAS. On average, fields with low 
yields had higher AUC-ANIR-STD values than those with high yields with a 58% relative 
difference at 20 DAS and 36% at 65 DAS. These results suggest that the spatial, temporal, and 
combined indices may enhance the sensitivity of multi-spectral satellite images to stress in maize 
fields as reflected by low and high yields.  

 

  

Fig 5 The average time-series of AUC-NDVI-STD and AUC-ANIR-STD grouped by yield level. The averages are based on all 
fields from 2019. 

Fig 6 The summed importance of the 30 most important indices by index type (a) and spectral range 
(b) for each time period derived from a Random Forest classification. 

 

Figure 6 shows the summarized importance of the 30 most important indices in distinguishing 
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ranking trend in all selected DAS. Yet, the combined indices or the temporal indices obtained the 

highest ranking in 4 selected DAS. In relation to the spectral range, the ranking shows the SWIR 

obtained the highest ranking in 3 selected DAS while the RGB obtained the lowest ranking in 2 

selected DAS. The RF classifications using the 30 most important indices obtained 0.67, 0.77, 

0.75, and 0.82 accuracies for the calibration set at 20, 40, 50, and 70 DAS, respectively. 

4 Conclusion 
The results of this study showed that the sensitivity of satellite SVIs to water stress may be 
enhanced by spatial, temporal, and combined indices as reflected by low and high yields. 
Additionally, it seems that low yield levels are associated with water stress because of the high 
importance of the SWIR indices which are more directly related to water content. Further studies 
will define the SVI-TDCs based on the most important indices and integrate them into a decision 
support system. Based on every TDC, empirical thresholds will be determined for each growth 
stage. For the multiple TDCs approach, i.e. TDCs of other selected SVIs and spatial and temporal 
indices the Stanford Certainty Theory (Luger & Stubblefield, 1998; Cohen et al., 2008) will be 
utilized. This approach will allow us to accumulate certainties from various TDCs thresholds and 
to build a decision support system for field risk assessment that will be verified by the 2021 field 
data. 
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