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Abstract.  
Precision agriculture is used in a wide variety of field operations and agricultural practices that 
affect our daily lives. Many fields of agriculture are increasingly adopting equipment automation, 
robotics, and machine learning techniques. These all lead to recognize that data collection and 
exploitation is a valuable tool assisting in real-time farming and livestock decisions. Thus, the 
immediate need to empower students in Agriculture Sciences with mathematical tools using 
data analysis is more imperative than ever before. Such tools will better prepare them for the 
challenges they face while working with data analysis and models in the context of Internet of 
Things (IoT). This paper aims to summarize previous experience in teaching Mathematics using 
data analyses as motivation to important Mathematical concepts towards applications in the 
area. This is a result from a thorough research and discussion with colleagues among many 
areas of applications within the field of Agriculture Sciences, which is in itself a rich 
interdisciplinary field. The examples gathered from this work were then used as motivation for 
teaching Mathematics to agriculture engineering students based and data analysis, aimed to 
prepare them towards using these tools more effectively not only throughout their degree, but 
helping to advance the field towards precision agriculture. I will describe a few instances of how 
data obtained from the literature are contextualized to present the concepts of functions, 
derivative and integration, multivariable functions, and linear algebra. In this one-year course, 
the students were introduced to and got familiarized with concepts and laws that would help 
them into to succeed in Soil Physics, Statistics, Meteorology, Topography, Economics, Biology, 
and so on. Besides sharing this experience, the idea here is to stir in the community this new 
paradigm for teaching Mathematics in the field of Agriculture Sciences. 
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Introduction 

Agricultural Sciences is possibly the field that most directly influences our daily lives. That is 
because it deals with our food supply and security. Today precision agriculture is used by a 
wide variety of farming operations and agricultural practices. This is primarily due to the 
reduction in the cost of acquisition of data and technology making precision agriculture a viable 
path to make agriculture more sustainable and increasing food availability.  

For example, precision agriculture seeks to use new technologies to increase crop yields and 
profitability while lowering the levels of traditional inputs needed to grow crops (land, water, 
fertilizer, herbicides and insecticides). Fields can be leveled by lasers, which means water can 
be applied more efficiently without running off into local streams and rivers. Field precision 
agriculture is enabled by using data obtained by precision geolocation, remote sensing, and the 
mapping of soils, nutrients, and crop conditions as well as the location of weeds and pathogens.  

This implies that an agriculture engineer must be prepared to make better use of this 
abundance of data and apply it to a more effective decision making.  

This also calls for a better multidisciplinary integration between Mathematics and Agronomy 
aiming to equip students with critical thinking about the use of data analysis and mathematical 
models in their area of application. By teaching these students, since their first year of 
undergraduate education, Mathematics with motivation focused on data analysis and models 
concerning their area of application, will better prepare them for their classes that uses these 
concepts and will encourage them to develop more scientific questions that turn into future 
investigations and development of new research areas in their filed. 

This type of approach is nowadays more common in Mathematics as well, that is why the idea 
of the STEM (Science, Technology, Engineering and Mathematics) education came about. 
However, the difficulty with the use of mathematics for agricultural scientists is that most 
courses in applied mathematics have been designed for other engineering students and without 
the data analysis. Agronomy, however, is different than the other engineering fields, because it 
comprises the use and application of biology, chemistry, plant genetics and physiology, animal 
sciences, meteorology, topography, soil sciences, economy and administration. Meaning that it 
is itself a multidisciplinary field, thus the need to propose an approach that will make use of this 
characteristic. 

What will be described are some examples on how one can present and explore mathematical 
concepts using data and the idea of creating a mathematical model for prediction. This idea was 
first developed in a research proposal in Brazil that produced a textbook, on its 8th reprint now, 
which can be translated as: Applied Mathematics to Agriculture Sciences: Data Analysis and 
Models [2]. This work is now being reviewed with the intend of translating to English and 
extending to include further advanced topics like Differential Equations.    

Calculus (in one variable) using Data Analysis  

Using data sets to motivate mathematical models is based on assumptions that each data set 
presented describes an exact mathematical relationship called function. By analyzing the 
phenomenon one can establish the domain and range of such functions as well whether this 
function (phenomenon) describes an increasing or decreasing behavior. It will be presented an 
example and how this can be dealt in the context of Agronomy. 
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Basics Functional Models:  

As an example, a polynomial model will be presented here, because it comprises concepts used 
in derivatives and integral. There are similar techniques for exploring data representing 
exponential, logarithm, power function and trigonometric models. 

In order to identify whether a data set describes polynomial behavior, one can compute and 
analyze whether the first rate of change (FRC). This information is crucial in data analysis 
because it determines how fast (or slow) the function is increasing or decreasing. If FRC is 
constant, then the data describe a linear function. If not, one can proceed to compute the 
second rate of change (SRC), to verify maybe whether this data models a quadratic function, or 
yet use the third rate of change (TRC) to verify whether it is a cubic, and so on. Obviously, it is 
very important to understand what each rate of change tell us about the data, and a sketch of its 
graph. A data set modeling a cubic polynomial summarizes this information on Example 1. 

Example 1: The first 2 columns of Table 1 describe corn production C [tons/acre] as a function 
of phosphorus p [tons/acre] added as fertilizer. The FRC, SRC and TRC are obtained as: 
Table 1.  Corn production C [t/a] as a function of amount of 
phosphorus p [t/a] –  

p[t/a] C(p) [t/a] 
FRC = ∆𝑪

∆𝒑
 SRC = ∆!$

∆%!
 

[𝑡/𝑎]&' 

TRC= 
∆"$
∆%"

[𝑡/𝑎]&( 

0 72.15    
2 88.15 8   

4 109.75 10.8 1.4  

6 134.55 12.4 0.8 -0.3 

8 160.15 12.8 0.2 -0.3 

10 184.15 12 -0.4 -0.3 

12 204.15 10 -1.0 -0.3 

14 217.75 6.8 -1.6 -0.3 

16 222.55 2.4 -2.2 -0.3 

18 216.15 -3.2 -2.8 -0.3 

 

After this analysis and by working backward 
substitution as a simple system, one can conclude 
that the corn production given by this data is described by  

𝐶(𝑝) = −0.05𝑝& + 𝑝' + 6.25𝑝 + 72.15	[𝑡/𝑎]                                                                                (1) 

Other similar mathematical strategies are available to identify whether a data can be modeled 
by polynomial of other degrees, exponential, power functions or trigonometric functions. 
Limit (including left and right) and asymptotic behaviors are introduced from data describing 
rational functions, exponential with limited growth, and logistic function.  

The crucial learning objective is to be able to identify which functional behavior each data set 
describes, the meaning of the FRC and what further info it gives about the data, similarly for the 
SRC, the TRC and so on. Also, based on these analyses, one should be able to sketch a graph. 

Figure 1: Graph obtained from Eq. (1) 
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2.2 Derivatives of various orders 

The data analysis previous described sets one up to introduce the definition of derivative which 
comes naturally from the FRC. However, in this context, the motivation stirs from the need of a 
tool that would estimate values that are not given on the table. For example, from the third 
column of Table 1, one can conclude that for phosphorus addition between 𝑝 = 6	[𝑡/𝑎] and 𝑝 =
10	[𝑡/𝑎], the production responses are the highest (fastest). Because one wants an optimal 
response in production, it would be fair to predict the production at 𝑝 = 7	[𝑡/𝑎]	or at 𝑝 = 9	[𝑡/𝑎]. 

After this analysis, one should recognize the limitations of the approximation and so the need to 
introduce the definition of derivative, using the formalism of Limit and further apply to the 
analytical Equation describing the data. One can return on each of the examples behind and 
motivate the need for concise rules for derivatives. Note that Derivative is the direct application 
of what is called variable rate technology (VTR) [2], built into farm machinery, that yields 
monitoring, auto-steering, navigation using on-board computers and network capability. 

The second derivative also comes as a natural consequence of analyzing further the data to 
convey the concept of concavity, maximum and minimum, as well as the definition of inflection 
points. These concepts are of extreme importance for applications of mathematics in many 
fields. Let's keep in mind, again, that agricultural science is a multidisciplinary field, and such 
concepts have well known applications in economy, biology and chemistry to name a few. 

2.3 Integration 

The concept of integration will be illustrated in Example 2 where the soil moisture 𝜃	[𝑐𝑚&/𝑐𝑚&] 
depends on the depth of soil profile 𝑧[𝑐𝑚]. 

Observe also that the students get familiarized with the formulation and techniques that will help 
them into Soil Physics and Meteorology.  

Example 2: Table 2 describes soil moisture 𝜃	[𝑐𝑚&/𝑐𝑚&] depending on depth 𝑧[𝑐𝑚]. 
Table 2: Soil moisture 𝜽 as a function of depth 𝒛 

𝑧[𝑐𝑚] 𝜃(𝑧)	[𝑐𝑚)/𝑐𝑚)] 𝐹𝑅𝐶	 =
∆𝜃
∆𝑧 	[𝑐𝑚

&'] 

0 0.15375 0.0012 
15 0.17160 5.200𝐸&* 
30 0.17940 -3.0666𝐸&* 
45 0.17480 0.0020 
60 0.20460 -0.00169 
75 0.17930 -0.00236 
90 0.14385  

 

In order to compute the amount of soil moisture 
accumulated, or water stored 𝑊9, from 0-90 𝑐𝑚, we use the integral: 

𝑊9 = ∫ 𝜃(𝑧)	𝑑𝑧:;
;                                                                                                                         (2)                                                                                       

This is a classic example where one can introduce the concept of integration. At first, again one 
can start with the numerical integration, then moving into the analytical. 

Figure 2: Soil moisture 𝜽 as a 
function of depth (z) 
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2.3.1 Density Function and Cumulative Density Function 

Another important application of integration has to do with understanding how a characteristic of 
a population is distributed within the population, one resorts into understanding the distribution 
and density of such characteristic, which will then use integration to compute probability. 

Example 3: Consider a plantation’s plot of corn, and one wants to understand how the height of 
each plant is distributed inside the plot, which is designed in Figure 3,  

 

      

 

                                                                                                      
Figure4:Distribution of the height of corn plot Fig. 3 

 

 

 

 

 

 

 

                                                                                                           

Figure 5: Cumulative Distribution 

 

From Table 3, the histogram (Fig.4) is obtained, from which one can also obtain a probability 
function, which can help us calculate the probability of obtaining from the crop, a plant with 
height between  ℎ = 𝑎	and ℎ = 𝑏 as: 

𝑃(205 ≤ ℎ ≤ 229) = ∫ 𝐷(ℎ)𝑑ℎ = 5 + 6.25 + 11.25 + 16.25 = 35.75%'':
';<                                     (3) 

Which can be computed by numerical integration methods like Riemann Sums, Midpoint or 
Trapezoidal method, or another. All those methods are useful when using data, because each 

206 230 229 247 235 260 240 233 
217 236 243 195 249 232 244 257 
233 235 241 225 217 230 252 239 
232 268 239 208 240 233 210 258 
190 232 219 245 196 216 232 235 
239 212 229 201 233 254 225 249 
222 244 228 221 232 215 227 198 
216 247 250 200 239 243 237 225 
228 226 253 225 247 244 233 203 
213 222 240 268 226 221 215 232 

Figure 3. Experimental plot of Corn plantation  

Table 3: Height's distribution from Fig.3 

ℎ =Intervals (𝒄𝒎)   Frequency Density (%) 𝐷(ℎ) =Density  %
,-

 

189 0 0 0 

197 3 3.75 0.46875 

205 4 5 0.62500 

213 5 6.25 0.78500 

221 13 11.25 1.40625 

229 18 16.25 2.03125 

237 14 22.5 2.8125 

245 12 17.5 2.18750 

253 8 10 1.25000 

261 4 5 0.62500 

269 2 2.5 0.25000 
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has properties that are suitable to one or other type of data distribution.  
Another direct application of integration is the cumulative distribution function (CDF), 
illustrated in Fig. 5, which is defined as                                                                                        

CDF=𝑃(𝑦) is the percentage of plants whose height is less than 𝑦	 = 	∫ 𝑝(𝑥)𝑑𝑥@
;                       (4) 

Calculus of Two or More Variables 
To introduce functions of two or more variables, again it can be done by using data from 
experiments, then the definitions of domain, range need to be revised in this context. The 
derivative and maximum and minimum also take new notations, but all based on the knowledge 
and a generalization of the one variable. By this time, it should already be clear the meaning 
and what information we gather by making these computations.  
Example 4:  Table 4 registers P(x,y) as the production of beans (Phaseolus vulgaris L.) (kg/ha) 
by changing levels of Nitrogen (kg/ha), which we set to be our variable x, and water level (mm), 
which is our variable y. The Domain can be described by the Cartesian interval notation  𝐷 =
[0,220]𝑋[105,635]. From the data, one obtains the 3-D graph, as Fig. 6: 

Table 4: Production of Beans as function of x= Nitrogen (kg/ha) and y= water (mm) 

 

                                                                              

The first new idea here is the level curves, corresponding to the combination of the variables 𝑥 

𝑦\𝑥 0 20 40 60 80 100 120 140 160 180 200 220 

105 1500.937 1751.757 1929.537 2034.277 2065.977 2024.637 1910.257 1722.837 1462.377 1128.877 722.3365 242.7565 

145 1733.937 1996.917 2186.857 2303.757 2347.617 2318.437 2216.217 2040.957 1792.657 1471.317 1076.937 609.5165 

180 1915.394 2189.014 2389.594 2517.134 2571.634 2553.094 2461.514 2296.894 2059.234 1748.534 1364.794 908.014 

225 2117.953 2405.253 2619.513 2760.733 2828.913 2824.053 2746.153 2595.213 2371.233 2074.213 1704.153 1261.053 

265 2268.969 2568.429 2794.849 2948.229 3028.569 3035.869 2970.129 2831.349 2619.529 2334.669 1976.769 1545.829 

305 2392.657 2704.277 2942.857 3108.397 3200.897 3220.357 3166.777 3040.157 2840.497 2567.797 2222.057 1803.277 

345 2489.017 2812.797 3063.537 3241.237 3345.897 3377.517 3336.097 3221.637 3034.137 2773.597 2440.017 2033.397 

385 2558.049 2893.989 3156.889 3346.749 3463.569 3507.349 3478.089 3375.789 3200.449 2952.069 2630.649 2236.189 

425 2599.753 2947.853 3222.913 3424.933 3553.913 3609.853 3592.753 3502.613 3339.433 3103.213 2793.953 2411.653 

465 2614.129 2974.389 3261.609 3475.789 3616.929 3685.029 3680.089 3602.109 3451.089 3227.029 2929.929 2559.789 

505 2601.177 2973.597 3272.977 3499.317 3652.617 3732.877 3740.097 3674.277 3535.417 3323.517 3038.577 2680.597 

550 2553.94 2940.04 3253.1 3493.12 3660.1 3754.04 3774.94 3722.8 3597.62 3399.4 3128.14 2783.84 

595 2472.117 2871.897 3198.637 3452.337 3632.997 3740.617 3775.197 3736.737 3625.237 3440.697 3183.117 2852.497 

635 2370.349 2782.289 3121.189 3387.049 3579.869 3699.649 3746.389 3720.089 3620.749 3448.369 3202.949 2884.489 

Figure 6: Graph obtained from the data on Table 4. 
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and 𝑦 that will yield each fixed production level. The concept of partial derivative can again be 
introduced as the generalization of FRC, as Partial First Rate of Change (PFRC), with respect 
to each variable (x,y). Its computation produces now two tables one for the approximate 
derivative with respect to x, named here (PFRCx), and another with the approximate derivative 
with respect to y, as (PFRCy).  They are defined as: 
 

							𝑃𝐹𝑅𝐶𝑥 = A(B!"#,:)EA(B!,:)
B!"#EB!

= ∆A
∆B

           (5)                𝑃𝐹𝑅𝐶𝑦 = A(:,@!"#)EA(:,@!)
@!"#E@!

= ∆A
∆@

                           
(6) 
 

One should realize that, in this example, 1 ≤ 𝑖 ≤ 11 for x and 1 ≤ 𝑖 ≤ 13 for y. 
Table 5: Snapshot of PFRCx (𝒌𝒈/𝒉𝒂 ∙ 𝒎𝒎) for   𝟎 ≤ 𝒙 ≤ 𝟏𝟐𝟎 and 𝟏𝟎𝟓 ≤ 𝒚 ≤ 𝟓𝟗𝟓, using (5) from Table 4. 

 Observe that the increasing and 
decreasing behaviors for the Nitrogen 
x at each given level of water y. One 
may think the concept PFRCx, as if y is 
kept fix. In here, it is done at each row. 
By analogy the PFRCy is obtained, 
again just part of the whole table, is 
illustrated on Table 6.  
 
 

Table 6: Snapshot of PFRCy [	]	  for   𝟎 ≤ 𝒙 ≤ 𝟏𝟐𝟎 and 𝟏𝟎𝟓 ≤ 𝒚 ≤ 𝟓𝟗𝟓, using (6), from Table 4. 

The PFRCy is obtained by computing 
the FRC over the column for each fixed 
x. 
As in 1-D case, our goal is to observe 
how these rates are changing. 
 
Using this numerical approach, it is 
reasonable to explain that at any given 
point (𝑥, 𝑦) these variations now are 
denoted by a vector, that approximate 

the Gradient Vector as: 

∆𝑃(𝑥, 𝑦) = 	 L∆A
∆B
, ∆A
∆@
M                                                                                                                  (7) 

Which will point (highlight) to regions of increasing and decreasing of the function production, 
and our main interest is to identify where the Numerical Gradient approaches zero, because we 
want to obtain the optimal combination of Nitrogen and water that would, in this case, maximize 
the production, meaning solving the system: 

N
∆A
∆B
= 0

∆A
∆@
= 0	

                                                                                                                             (8) 

By analyzing the values one can estimate the maximum of the production to be in the subregion 
of the domain R=[100,120]x[505,550].  

PFRCx 0 20 40 60 80 100 120 
105 12.541 8.889 5.237 1.585 -2.067 -5.719 -9.371 
145 13.149 9.497 5.845 2.193 -1.459 -5.111 -8.763 
180 13.681 10.029 6.377 2.725 -0.927 -4.579 -8.231 
225 14.365 10.713 7.061 3.409 -0.243 -3.895 -7.547 
265 14.973 11.321 7.669 4.017 0.365 -3.287 -6.939 
305 15.581 11.929 8.277 4.625 0.973 -2.679 -6.331 
345 16.189 12.537 8.885 5.233 1.581 -2.071 -5.723 
385 16.797 13.145 9.493 5.841 2.189 -1.463 -5.115 
425 17.405 13.753 10.101 6.449 2.797 -0.855 -4.507 
465 18.013 14.361 10.709 7.057 3.405 -0.247 -3.899 
505 18.621 14.969 11.317 7.665 4.013 0.361 -3.291 
550 19.305 15.653 12.001 8.349 4.697 1.045 -2.607 
595 19.989 16.337 12.685 9.033 5.381 1.729 -1.923 

PFRCy 0 20 40 60 80 100 120 
105 5.8250 6.1290 6.4330 6.7370 7.0410 7.3450 7.6490 
145 4.5364 4.8024 5.0684 5.3344 5.6004 5.8664 6.1324 
180 5.0639 5.4059 5.7479 6.0899 6.4319 6.7739 7.1159 
225 3.7754 4.0794 4.3834 4.6874 4.9914 5.2954 5.5994 
265 3.0922 3.3962 3.7002 4.0042 4.3082 4.6122 4.9162 
305 2.409 2.713 3.017 3.321 3.625 3.929 4.233 
345 1.7258 2.0298 2.3338 2.6378 2.9418 3.2458 3.5498 
385 1.0426 1.3466 1.6506 1.9546 2.2586 2.5626 2.8666 
425 0.3594 0.6634 0.9674 1.2714 1.5754 1.8794 2.1834 
465 -0.3238 -0.0198 0.2842 0.5882 0.8922 1.1962 1.5002 
505 -1.1809 -0.8389 -0.4969 -0.1549 0.1871 0.5291 0.8710 
550 -2.0455 -1.7036 -1.3616 -1.0196 -0.6776 -0.3356 0.0064 
595 -2.5442 -2.2402 -1.9362 -1.6322 -1.3282 -1.0242 -0.7202 
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Here also can be introduced the concept of Differential and Directional Derivatives to 
determine the rate of change, as it was worked in 1-D version. The data analysis and graphs 
allow to work these concepts either by numerical means or later, when the correspondent 
analytical versions be defined. These will set also the need to determine how the function is 
changing in directions that are not necessarily the x-y directions, but a combination of those.   
Even though in this paper there is not intro to vectors and operations, like the usual ones and 
the inner product, these are part of prerequisite for multivariable calculus. In [2], these are 
worked prior to functions in multiple variables and with many interesting applications including in 
Topography. 
We can graph both tables of the PFRCx and PFRCy to analyze the behavior of each. In this 
case, it can be seen that each PFRC is a plane, meaning that the original data can be fit into a 
quadratic polynomial and by various methods, either solving system, or doing best fit methods, 
one can obtain the analytical equation to be: 

𝑃(𝑥, 𝑦) = 759.29 + 12.771𝑥 + 7.96𝑦 + 0.0152𝑥𝑦 − 0.0913𝑥' − 0.00854𝑦'                               (9) 

With domain 𝐷 = [0,220]	𝑋[105,635]	(𝑘𝑔/ℎ𝑎,𝑚𝑚).  
Another way to check that the data is indeed from a quadratic polynomial, is to compute the 
approximate Second Derivative, observing that one will obtain now 4 tables (instead of 2 for the 
gradient) corresponding to the variation of the PFRC on each coordinate x and y, meaning that 
one would have four Partial Second Rate of Change (PSRC), that would be PSRCxx, 
PSRCxy, PSRCyx, PSRCyy. Here one can identify that for each point, the PSRC is a 2x2 
matrix: 

∆'𝑃(𝑥, 𝑦) = S
PSRCxx PSRCxy
PSRCyx PSRCyyZ = [

∆$A
∆B$

∆$A
∆B∆@

∆$A
∆@∆B

∆$A
∆@$

\                                                                        

(10)     
Since an analytical equation that models the data was found Eq. (9), then analytical and usual 
approaches are used, that can always be looked back at the results of the approximated 
expressions in order to motivate the definitions of the continuous approach. 
Besides introducing the concept of function with more than one variable, understanding its 
notation and setting, one can work on optimization, for finding maximum, minimum and 
saddle points, and more importantly its meaning and usefulness for applications in many 
areas. One may verify that the maximum production 𝑃 = 3779.9	𝑘𝑔/ℎ𝑎 occurs at (117.43 kg/ha, 
570.55 mm). An application of these concepts is the Least Square Method, which will highlight 
the difference between statistical and mathematical models, and it will be used in their Statistics 
classes. 
 
Constrained Optimization – Lagrange Multipliers 

Another topic that is not usually covered in a standard math course is constrained optimization. 
However, this is another crucial topic that needs to be taught because it is the basis for many 
applications, including the Method Simplex that will be discussed ahead into the Linear Algebra 
setting. One application will be illustrated that follows up as a continuation of the previous 
example, once the analytical function has been founded in Eq. (9). 
 
Example 5: Considering the data from Table 4 and its model given by Eq. (9), one may want to 
maximize production subject to the fixed cost of Nitrogen and water given by the equation  
𝐶(𝑥, 𝑦) = 1.5𝑥 + 𝑦 = $500. 
Without going into details of how to obtain such values and observing that the corresponding 
Lagrangean function 𝐿(𝑥, 𝑦, 𝜇) which now has three variables, which in fact here 𝜇 is a 
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parameter, called Lagrangean multiplier. It can be verified that the new values that satisfy the 
constrain of cost and maximize the production is  𝑥 = 79.665	𝑘𝑔/ℎ𝑎, 𝑦 = 	380.50	𝑚𝑚	𝑎𝑛𝑑	𝜇 =
−2.672	𝑘𝑔/ℎ𝑎 ∙ $. The new maximum of the production is now 𝑃 = 3450.36	𝑘𝑔/ℎ𝑎,	which is 
smaller than the previous value for unconstrained optimization, as expected. The most 
important result here is the interpretation of the parameter 𝜇. In this case, by using the 
differential of P, one can estimate that if instead of $500, the owner is willing spend $501, then 
P will increase by 𝜇 = 2.672, giving 𝑃 = 3453.032	𝑘𝑔/ℎ𝑎.  
The generalization for considering other type of constrains follows, where each constrain is 
associated to a new multiplier, say for example 𝜎. Then once the new Lagrangean is obtained 
with now four “variables”, from which one can compute the respective weight that each 
constrain would carry over the production. Meaning that if the absolute value of 𝜎 is greater than 
𝜇, that would imply that the constrain associated with 𝜎 has greater impact into the production 
than the cost which has 𝜇 as its rate of change parameter.  
Needles to observe that one can apply this Method by posing the problem in a reverse way, that 
is, how to minimize the Cost, 𝐶(𝑥, 𝑦), subject to a set production level. Understanding how to 
set up such problems and interpreting its solutions may give one the appreciation for having the 
analytical equation handy.  
 

Linear Algebra and its Applications 
 
The concepts of vector and matrices and their algebraic operations, like addition, subtraction, 
and scalar multiplication, come naturally from manipulating Tables with numerical data. In this 
section, it will describe important applications of linear algebra beyond the solution of linear 
systems, which is the obvious one, such as Markov chains and the Simplex Method. 
 

Solution of linear systems  
This is the topic that has the most obvious applications pertaining to the various areas of 
Agronomy. The Examples seen before were the set up and the solution of the gradient system 
leading to critical points Eq. (9) and the solution of the system to determine the equation that 
models a data set (such as in Example 1). Here is a good place to understand underdetermined 
or overdetermined systems, as well as systems that do not have solutions.  
 

Markov Chains 
The concept will be illustrated and discussed in an example about market distribution between 
companies that offers one good to the market. Usually, these setting corresponds to how to 
separate a limited supply. This same idea comes into play into pray-predator scheme, in genetic 
and in economics, to name a few. 
Example 6: Consider three companies supplying milk to a market with brands X, Y, Z. The 
amount that each company sells varies with time, based on parameters like marketing, prices 
and other conveniences. Assuming that there are no other brands and that constant fractions of 
the consumers prefer one brand over another within the given time. This is to say that on Jan. 
1st, the brands X, Y and Z have fractions 𝑥;, 𝑦; and 𝑧; of the market, respectively. Whereas in 
Feb. 1st they have fractions  𝑥S, 𝑦S and 𝑧S. The question is how the market evolves in time and 
whether this market can be considered stable or unstable? 
Solution: Consider the number of consumers n, and the notation 𝑎TT	= fraction of consumers that 
used the same brand over time, and 𝑎T	U=fraction that changed from brand j to brand i with 𝑖 ≠ 𝑗. 
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In the present example, 1≤ 𝑖 ≤ 3 and 1≤ 𝑗 ≤ 3.    
The first assumption leads to the system for the market in Jan. 1st and Feb. 1st: 

e𝑥; +	𝑦; +	𝑧; = 1
𝑥S +	𝑦S +	𝑧S = 1 

From the second assumption, the number of consumers that X has in Feb. 1st is equal to the 
numbers that did not change brand plus the ones that moved from Y and Z. This can be 
formalized as 𝑥S𝑛 = 𝑎S,S(𝑥;𝑛) + 𝑎S,'(𝑦;𝑛) + 𝑎S,&(𝑧;𝑛), meaning that in Feb. 1st one would have: 

f
𝑥S = 𝑎SS𝑥; + 𝑎S'𝑦; + 𝑎S&𝑧;
𝑥' = 𝑎'S𝑥; + 𝑎''𝑦; + 𝑎'&𝑧;
𝑥& = 𝑎&S𝑥; + 𝑎&'𝑦; + 𝑎&&𝑧;

					=> 						 𝑋S = 𝐴𝑋;																																																																																		(11)	

Where the matrix 𝐴 = i
𝑎SS 𝑎S' 𝑎S&
𝑎'S 𝑎'' 𝑎'&
𝑎&S 𝑎&' 𝑎&&

j and 𝑋; = (𝑥;, 𝑦;, 𝑧;)V, where “t” stands for transpose. 

The matrix   𝐴 has a special name called Transition Matrix because all its entries are such that 
0 ≤ 𝑎TU ≤ 1 and as each 𝑎TU is a fraction of a population, the elements of each column must add 

to 1. If in Jan. 1st the initial market is 𝑋; = (0.2, 0.3, 0.5)V and 𝐴 = i
0.8 0.2 0.1
0.1 0.7 0.3
0.1 0.1 0.6

j then by Feb. 

1st, the distribution of the market will be 𝑋S = (0.27, 0.38, 0.35)V  whereas in March 1st, the 
distribution will be 𝑋' = 𝐴𝑋S, which give 𝑋' = (0.327, 0.398, 0.275)V meaning that the market is 
distributed with 32.7% with brand X, 38.9% with brand Y and 27.5% using brand Z. 
The equilibrium of the system is reached when applying the same operation consistently over 
time, and the distribution 𝑋 = (𝑥, 𝑦, 𝑧)V  does not change.  This means that exist a vector 𝑋 such 
that 𝐴𝑋 = 𝑋, this equation leads to the system (𝐴 − 𝐼)𝑋 = 0 where 𝐼 is the 3x3 identity matrix, 
with the additional constraint that 𝑥 + 𝑦 + 𝑧 = 1, which can be set as: 

l

−0.2𝑥 + 0.2𝑦 + 0.1𝑧 = 0
0.1𝑥 − 0.3𝑦 + 0.3𝑧 = 0
0.1𝑥 + 0.1𝑦 − 0.4𝑥 = 0

𝑥 + 𝑦 + 𝑧 = 1

 

Which leads to the solution 𝑋 = (0.45, 0.35, 0.2)V. meaning that there will be no transition from 
one brand to another when brands X, Y and Z have 45%, 35% and 20% of the market, 
respectively. 
The procedure carried out is called Markov chains. As mentioned before, this set up has many 
applications besides economy, like in population dynamics, genetics, meteorology, to name a 
few.  

 

Linear Programming and the Simplex Method     
The linear programming deals with constrained optimization that follows in the path of 
Lagrange multipliers, but here all functions are linear, meaning its 3D surfaces are planes if 
you want to set in the 3D. Recall that there in Example 5, that one had a quadratic polynomial 
(production) in 3D subject to a linear cost function.  
The Simplex Method is possibly one of the most useful and powerful tool that Mathematicians 
have produced in this last century! With applications in so many areas, that Precision 
Agriculture has also benefited from! Its usefulness comes by the fact that it is quite simple to 
understand – because every function is linear - and easy to set it up in a numerical algorithm to 
be implemented into computers. It is a direct application of a data set, as it will be illustrated 
next in a rather elementary way, because the idea here is to exemplify applications pertinent.  
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Example 7: A poultry production of chicken need to combine calories and protein for a balanced 
diet for the chickens. The optimal amount consists of 3000 (Cal) from calories and minimum of 
17.16% from protein. Considering that the farmer has only corn and soybean meal and each Kg 
of corn has 8.51% of protein and 3146 (Cal) of energy, whereas the soybean has 45.6% from 
protein and 2283 (Cal) per Kg, however it is possible to include 0.2 Kg of soybean on each 
portion of the food. Considering that the price of corn is $ 0.80 per Kg and the soybean costs 
$3.80 per Kg, how much of each component must be mixed to make a portion that has the 
minimum cost?  
Solution: The Table summarizes some of the data described above. 
 
Table 7: Data from Example 7 

 The set up corresponds minimize the 
cost function 𝐶(𝑥, 𝑦) = 0.8𝑥 + 3.8	𝑦 where 
𝑥 is the amount of corn and 𝑦 is the 
amount of soybean, considering the 
minimum requirement which is translated 
to a system of inequalities that need to be 

satisfied. Thus, the problem becomes to   

Minimize  𝐶(𝑥, 𝑦) = 0.8𝑥 + 3.8	𝑦 

Subject	to	

⎩
⎪
⎨

⎪
⎧
0.0851𝑥 + 0.456𝑦 ≥ 0.1716
3146𝑥 + 2283𝑦 ≥ 3000

𝑦 ≤ 0.2
𝑥 ≥ 0
𝑦 ≥ 0

	Because of its linear nature, the inequalities determine a 

polygonal region in 2-D with corners (vertex), and the huge result here is that the minimum of 
𝐶(𝑥, 𝑦) is attained at one of these vertex. Likewise, if one looks to maximize a function, instead 
of minimizing. Without detailing the fundamentals of it but understanding the Lagrange 
multipliers method is the key to determine the vertex that will minimize the cost and at the same 
time fulfill the given constraints from Table 7. By simple inspection one finds that the 
combination of 𝑥 = 0.994	𝐾𝑔 and 𝑦 = 0.2	𝐾𝑔 will have the cost of 1.51$/Kg. 
Obviously, one can add more restrictions combining these 2 components, and the set up can be 
extended to many variables. 

Conclusion:   
It was presented here an approach on how to introduce data analysis and modeling for teaching 
Mathematics to Agriculture Engineering students. This was a summary which is part of a 
revision of a previous work by the author. The future work intends to include other topics of 
relevance as well as more advanced topics, such as Differential Equations.   
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 Corn (kg) Soybean 
Meal (Kg) 

Minimum 
requirement 

Protein (%) 8.51 45.6 17.16 

Calories (Cal) 3146 2283 3000 

Cost ($) 0.8 3.8  
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