Login

Proceedings

Find matching any: Reset
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Add filter to result:
Authors
Abenina, M
Abukmeil, R
Adhikari, K
Ahrends, H.E
Al-Gaadi, K
Alchanati, V
Alchanatis, V
Almallahi, A
Ameglio, L
Ameglio, L
Arias, A
Baumbauer, C
Beeri, O
Beeri, O
Ben-Gal, A
Carlier, A
Carlier, A
Ciampitti, I
Cohen, Y
Cohen, Y
Cutulle, M
Dandrifosse, S
Dandrifosse, S
Davadant, P
DeBruin, J
Dreyer, J.G
Dumont, B
Dumont, B
Dumont, B
Eberle, D
El-Mejjaouy, Y
Ennadifi, E
Gips, A
Goldshtein, E
Goldshtein, E
Goldwasser, Y
Goodrich, P
Gosselin, B
Gunzenhauser, B
Hajda, C
Heggemann, T.W
Hensley, R
Hernandez, C
Kang, C
Karkee, M
Katz, L
Keller, M
Khosla, R
Kitchen, N.R
Kyveryga, P
Lajunen, A
Lee, K
Litaor, I
Liu, H
Longchamps, L
Lund, E
Lund, T
Madugundu, R
Maja, J.J
Mandal, D
Maxton, C
Melgar, J
Mercatoris, B
Mercatoris, B
Mercatoris, B
Molin, J.P
Myers, D
Nadav, I
Naor, A
Oukarroum, A
Owens, P.R
Peeters, A
Pelta, R
Pelta, R
Prestholt, A
PÄTZOLD, S
Ransom, C.J
Sade, Z
Sampath, N
Shcherbatyuk, N
Shilo, T
Shilo, T
Siqueira, R.D
Smith, D.R
Stettler, E
Sudduth, K
Sudduth, K.A
Sudduth, K.A
Tarshish, R
Tavares, T.R
Tola, E
Underwood, H
Vermeulen, P
Veum, K
Veum, K.S
Vong, C
Vories, E
Wehrle, R
Xiong, X
Ye, D
Zhang, Q
Zhou, J
Zhou, J
Zhou, J
Zhou, J
da Silva, T.R
de Carvalho, H.W
Topics
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Type
Oral
Poster
Year
2022
Home » Topics » Results

Topics

Filter results26 paper(s) found.

1. Developing Empirical Method to Estimate Phosphorous in Potato Plants Using Spectroscopy-based Approach

Application of non-destructive sensors opens a promising opportunity to provide efficient information on nutrient contents based on leaf or canopy reflectance in different crops. In potatoes, nutrient levels are estimated by conducting chemical tests for the petioles. In thinking of deploying sensors for potato nutrient estimation, it is necessary to study the spectrum based on petiole chemical testing rather than leaf chemical testing. Thus, this study aimed to investigate whether there is a... R. Abukmeil, A. Almallahi

2. On-the-go Gamma Spectrometry and Its Evaluation Via Support Vector Machines: Really a Valuable Tool for Site-independent Soil Texture Prediction?

With progressive implementation of precision agriculture (PA) techniques in current agricultural/ viticultural practice, the need for high-resolution information on soil properties at low effort and cost is increasing. Moreover, climate change and extended drought periods do even increase this demand. Evaluating soil fertility and carbon storage potential of arable fields and vineyards, e.g. for future economic assessment of ecosystem services, requires spatially resolved soil data. Soil text... S. PÄtzold, T.W. Heggemann, R. Wehrle

3. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural Fields

The normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might al... R. Pelta, O. Beeri, T. Shilo, R. Tarshish

4. Gamma-ray Spectrometry to Determine Soil Properties for Soil Mapping in Precision Agriculture

Soil maps are critical for various land use applications and form the basis for the successful implementation of precision agriculture in crop production. Soil maps provide the spatial distribution of important soil physical and chemical properties to a farmer. The farmer uses this information to make critical management decisions for profitable and sustainable food production. South Africa is a water scarce country where rainfall is mainly seasonal and unreliable. Under these circumstances, ... J.G. Dreyer, L. Ameglio

5. Predicting Secondary Soil Fertility Attributes Using XRF Sensor with Reduced Scanning Time in Samples with Different Moisture Content

To support future in situ/on-the-go applications using X-ray fluorescence (XRF) sensors for soil mapping, this study aimed at evaluating the XRF performance for predicting organic matter (OM), base saturation (V), and exchangeable (ex-) Mg, using a reduced analysis time (e.g., 4 s) in soil samples with different moisture contents. These attributes are considered secondary for XRF prediction because they do not present emission lines in the XRF spectrum. Ninety-nine soil samp... T.R. Tavares, J.P. Molin, T.R. Da silva , H.W. De carvalho

6. The Use of Spatial and Temporal Measures to Enhance the Sensitivity of Satellite-based Spectral Vegetation Indices to (Water) Stress in Maize Fields

Climate change and water scarcity are reducing the available irrigation water for agriculture thus turning it into a limited resource. Today calculating and estimating crop water requirements are achieved through the ETc FAO-56 model where the effect of climate on crop water requirement is determined through the water evaporation from the soil and plant (ETref), and a calendar crop coefficient (Kc). Models t... Y. Goldwasser, V. Alchanati, E. Goldshtein, Y. Cohen, A. Gips, I. Nadav

7. Organ Scale Nitrogen Map: a Novel Approach for Leaf Nitrogen Concentration Estimation

Crop nitrogen trait estimations have been used for decades in the frame of precision agriculture and phenotyping researches. They are crucial information towards a sustainable agriculture and efficient use of resources. Remote sensing approaches are currently accurate tools for nitrogen trait estimations. They are usually quantified through a parametric regression between remote sensing data and the ground truth. For instance, chlorophyll or nitrogen concentration are accurately estimated usi... A. Carlier, S. dandrifosse, B. Dumont, B. Mercatoris

8. Sun Effect on the Estimation of Wheat Ear Density by Deep Learning

Ear density is one of the yield components of wheat and therefore a variable of high agronomic interest. Its traditional measurement necessitates laborious human observations in the field or destructive sampling. In the recent years, deep learning based on RGB images has been identified as a low-cost, robust and high-throughput alternative to measure this variable. However, most of the studies were limited to the computer challenge of counting the ears in the images, without aiming to convert... S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, B. Mercatoris

9. Machine Learning Techniques for Early Identification of Nitrogen Variability in Maize

Characterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertiliz... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla

10. Soil Variability Mapping with Airborne Gamma-ray Spectrometry and Magnetics

The knowledge of spatial distribution of agricultural soils physical and chemical properties is critical for profitable and sustainable crop and food production. The collection of soil data presents however obvious problems arising from sampling a dense, opaque and very heterogeneous medium. Conventional methods consisting of ground-based grid survey are laborious, expensive and lack appropriate spatial resolution to allow best farm management decision. Over the past 50 years, airborne geophy... L. Ameglio, E. Stettler, D. Eberle

11. Printed Nitrate Sensors for In-soil Measurements

Managing nitrate is a central concert for precision agriculture, from delineating management zones, to optimizing nitrogen use efficiency through in-season applications, to minimizing leaching and greenhouse gas emissions. However, measurement methods for in-soil nitrate are limiting. State-of-the-art soil nitrate analysis requires taking soil or liquid samples to laboratories for chemical or spectrographic analysis. These methods are accurate, but costly, labor intensive, and cover limited g... C. Baumbauer, P. Goodrich, A. Arias

12. Comparison of Canopy Extraction Methods from UAV Thermal Images for Temperature Mapping: a Case Study from a Peach Orchard

Canopy extraction using thermal images significantly affects temperature mapping and crop water status estimation. This study aimed to compare several canopy extraction methodologies by utilizing a large database of UAV thermal images from a precision irrigation trial in a peach orchard. Canopy extraction using thermal images can be attained by purely statistical analysis (S), a combination of statistical and spatial analyses (SS), or by synchronizing thermal and RGB images, following RGB sta... L. Katz, A. Ben-gal, I. Litaor, A. Naor, A. Peeters, E. Goldshtein, V. Alchanatis, Y. Cohen

13. Investigating the Potential of Visible and Near-infrared Spectroscopy (VNIR) for Detecting Phosphorus Status of Winter Wheat Leaves Grown in Long-term Trial

The determination of plant nutrient content is crucial for evaluating crop nutrient removal, enhancing nutrient use efficiency, and optimizing yields. Nutrient conventional monitoring involves colorimetric analyses in the laboratory; however, this approach is labor-intensive, costly, and time-consuming. The visible and near-infrared spectroscopy (VNIR) or hyperspectral non-imaging sensors have been an emerging technology that has been proved its potential for rapid detection of plant nutrient... Y. El-mejjaouy, B. Dumont, A. Oukarroum, B. Mercatoris , P. Vermeulen

14. Toward Smart Soybean Variety Selection Using UAV-based Imagery and Machine Learning

The efficiency of crop breeding programs is evaluated by the genetic gain of a primary trait of interest, e.g., yield and resilience to stress, achieved in one year through artificial selection of advanced breeding materials. Conventional breeding programs select superior genotypes using the primary trait (yield) based on combine harvesters, which is labor-intensive and often unfeasible for single-row progeny trials due to their large population, complex genetic behavior, and high genotype-en... J. Zhou, J. Zhou

15. Estimating Soil Carbon Stocks with In-field Visible and Near-infrared Spectroscopy

Agricultural lands can be a sink for carbon and play an important role in offsetting carbon emissions. Current methods of measuring carbon sequestration—through repeated temporal soil samples—are costly and laborious. A promising alternative is using visible, near-infrared (VNIR) diffuse reflectance spectroscopy. However, VNIR data are complex, which requires several data processing steps and often yields inconsistent results, especially when using in situ VNIR measurements. Using... C.J. Ransom, C. Vong, K.S. Veum, K.A. Sudduth, N.R. Kitchen, J. Zhou

16. Analytical and Technological Advancements for Soybean Quality Mapping and Economic Differentiation

In the past, measuring soybean protein and oil content required the collection of soybean seed samples and laboratory analyses. Modern on-the-go near-infrared (NIR) sensing technologies during the harvest and proximal remote sensing (aerial and satellite imagery) before harvest time can be used to provide an early estimate of seed quality levels, benchmark in-season predictions with at-harvest final seed quality and enable seed differentiation for farmers leading to better marketing strategie... A. Prestholt, C. Hernandez, I. Ciampitti , P. Kyveryga

17. Hay Yield Estimation Using UAV-based Imagery and a Convolutional Neural Network

Yield monitoring systems are widely used commercially in grain crops to map yields at a scale of a few meters. However, such high-resolution yield monitoring and mapping for hay and forage crops has not been commercialized. Most commercial hay yield monitoring systems only obtain the weight of individual bales, making it difficult to map and understand the spatial variability in hay yield. This study investigated the feasibility of an unmanned aerial vehicle (UAV)-based remote sensing system ... K. Lee, K.A. Sudduth, J. Zhou

18. Diagnosis of Grapevine Nutrient Content Using Proximal Hyperspectral Imaging

Nutrient deficiencies on grapevines could affect the fruit yield and quality, which is a major concern in vineyards. Nutrient deficiencies may be recognizable by foliar symptoms that vary by mineral nutrient and stress severity, but it is too late to manage when visible deficiency symptoms become apparent. The nutrient analysis in the laboratory is the way to get an accurate result, but it is time and cost-intensive. The differences in leaf nutrient levels also alter spectral characteristics ... C. Kang, M. Karkee, Q. Zhang, N. Shcherbatyuk, P. Davadant, M. Keller

19. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

20. Impact of Cover Crop and Soil Apparent Electrical Conductivity on Cotton Development and Yield

Cotton is one of the major crops in the New Madrid Seismic Zone (NMSZ) of the U.S. Lower Mississippi River Valley region. Because cotton production doesn’t leave a lot of crop residue in the field, low soil organic matter levels are common. While the benefits of crop rotation are well known, cotton is often grown year after year in the same fields for economic reasons. Soils in the region are generally quite variable, with areas of very high sand content. Winter cover crops and reduced ... E. Vories, K. Veum, K. Sudduth

21. Measuring Soil Carbon with Intensive Soil Sampling and Proximal Profile Sensing

Soils have a large carbon storage capacity and sequestering additional carbon in agricultural fields can reduce CO2 levels in the atmosphere, helping to mitigate climate change. Efforts are underway to incentivize agricultural producers to increase soil organic carbon (SOC) stocks in their fields using various conservation practices.  These practices and the increased SOC provide important additional benefits including improved soil health, water quality and – in some cases –... E. Lund, T. Lund, C. Maxton

22. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress Mapping

Evaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-i... O. Beeri, R. Pelta, Z. Sade, T. Shilo

23. Functional Soil Property Mapping with Electrical Conductivity, Spectral and Satellite Remote Sensors

Proximal electrical conductivity (EC) and spectral sensing has been widely used as a cost-effective tool for soil mapping at field scale. The traditional method of calibrating proximal sensors for functional soil property prediction (e.g., soil organic matter, sand, silt, and clay contents) requires the local soil sample data, which results in a field-specific calibration. In this large-scale study consisting of 126 fields, we found that the traditional local calibration method had suffered w... X. Xiong, D. Myers, J. Debruin, B. Gunzenhauser, N. Sampath, D. Ye, H. Underwood, R. Hensley

24. Proximal Sensing of Penetration Resistance at a Permanent Grassland Site in Southern Finland

Proximal soil sensing allows for assessing soil spatial heterogeneity at a high spatial resolution. These data can be used for decision support on soil and crop agronomic management. Recent sensor systems are capable of simultaneously mapping several variables, such as soil electrical conductivity (EC), spectral reflectance, temperature, and water content, in real-time. In autumn 2021, we used a commercial soil scanner (Veris iScan+) to derive information on soil spatial variability for a per... H.E. Ahrends, A. Lajunen

25. Employment of the SSEB and CROPWAT Models to Estimate the Water Footprint of Potato Grown in Hyper-arid Regions of Saudi Arabia

Quantifying crops’ water footprint (WF) is essential for sustainable agriculture especially in arid regions, which suffers from harsh environmental conditions and severe shortage of freshwater resources such as Saudi Arabia. In this study, WF of irrigated potato crop was estimated for the implementation of precision agriculture techniques. The CROPWAT and the Simplified Surface Energy Balance (SSEB) approaches were adopted. Soil, plant, and yield samples were randomly collected from six... R. Madugundu, K. Al-gaadi, E. Tola

26. Mapping Soil Health and Grain Quality Variations Across a Corn Field in Texas

Soil health is a key property of soils influencing grain yield and quality. Within-field mapping of soil health index and grain quality can help farmers and managers to adjust site-specific farm management decisions for economic benefits. A study was conducted to map within-field soil health and grain protein and oil content variations using apparent electrical conductivity (ECa) and terrain attributes as their predictors. Two hundred and two topsoil samples were analyzed to determine soil he... K. Adhikari, D.R. Smith, C. Hajda, P.R. Owens