Topics
Filter results26 paper(s) found. |
---|
1. Developing Empirical Method to Estimate Phosphorous in Potato Plants Using Spectroscopy-based ApproachApplication of non-destructive sensors opens a promising opportunity to provide efficient information on nutrient contents based on leaf or canopy reflectance in different crops. In potatoes, nutrient levels are estimated by conducting chemical tests for the petioles. In thinking of deploying sensors for potato nutrient estimation, it is necessary to study the spectrum based on petiole chemical testing rather than leaf chemical testing. Thus, this study aimed to investigate whether there is a... R. Abukmeil, A. Almallahi |
2. On-the-go Gamma Spectrometry and Its Evaluation Via Support Vector Machines: Really a Valuable Tool for Site-independent Soil Texture Prediction?With progressive implementation of precision agriculture (PA) techniques in current agricultural/ viticultural practice, the need for high-resolution information on soil properties at low effort and cost is increasing. Moreover, climate change and extended drought periods do even increase this demand. Evaluating soil fertility and carbon storage potential of arable fields and vineyards, e.g. for future economic assessment of ecosystem services, requires spatially resolved soil data. Soil text... S. PÄtzold, T.W. Heggemann, R. Wehrle |
3. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural FieldsThe normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might al... R. Pelta, O. Beeri, T. Shilo, R. Tarshish |
4. Gamma-ray Spectrometry to Determine Soil Properties for Soil Mapping in Precision AgricultureSoil maps are critical for various land use applications and form the basis for the successful implementation of precision agriculture in crop production. Soil maps provide the spatial distribution of important soil physical and chemical properties to a farmer. The farmer uses this information to make critical management decisions for profitable and sustainable food production. South Africa is a water scarce country where rainfall is mainly seasonal and unreliable. Under these circumstances, ... J.G. Dreyer, L. Ameglio |
5. Predicting Secondary Soil Fertility Attributes Using XRF Sensor with Reduced Scanning Time in Samples with Different Moisture ContentTo support future in situ/on-the-go applications using X-ray fluorescence (XRF) sensors for soil mapping, this study aimed at evaluating the XRF performance for predicting organic matter (OM), base saturation (V), and exchangeable (ex-) Mg, using a reduced analysis time (e.g., 4 s) in soil samples with different moisture contents. These attributes are considered secondary for XRF prediction because they do not present emission lines in the XRF spectrum. Ninety-nine soil samp... T.R. Tavares, J.P. Molin, T.R. Da silva , H.W. De carvalho |
6. The Use of Spatial and Temporal Measures to Enhance the Sensitivity of Satellite-based Spectral Vegetation Indices to (Water) Stress in Maize FieldsClimate change and water scarcity are reducing the available irrigation water for agriculture thus turning it into a limited resource. Today calculating and estimating crop water requirements are achieved through the ETc FAO-56 model where the effect of climate on crop water requirement is determined through the water evaporation from the soil and plant (ETref), and a calendar crop coefficient (Kc). Models t... Y. Goldwasser, V. Alchanati, E. Goldshtein, Y. Cohen, A. Gips, I. Nadav |
7. Organ Scale Nitrogen Map: a Novel Approach for Leaf Nitrogen Concentration EstimationCrop nitrogen trait estimations have been used for decades in the frame of precision agriculture and phenotyping researches. They are crucial information towards a sustainable agriculture and efficient use of resources. Remote sensing approaches are currently accurate tools for nitrogen trait estimations. They are usually quantified through a parametric regression between remote sensing data and the ground truth. For instance, chlorophyll or nitrogen concentration are accurately estimated usi... A. Carlier, S. dandrifosse, B. Dumont, B. Mercatoris |
8. Sun Effect on the Estimation of Wheat Ear Density by Deep LearningEar density is one of the yield components of wheat and therefore a variable of high agronomic interest. Its traditional measurement necessitates laborious human observations in the field or destructive sampling. In the recent years, deep learning based on RGB images has been identified as a low-cost, robust and high-throughput alternative to measure this variable. However, most of the studies were limited to the computer challenge of counting the ears in the images, without aiming to convert... S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, B. Mercatoris |
9. Machine Learning Techniques for Early Identification of Nitrogen Variability in MaizeCharacterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertiliz... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla |
10. Soil Variability Mapping with Airborne Gamma-ray Spectrometry and MagneticsThe knowledge of spatial distribution of agricultural soils physical and chemical properties is critical for profitable and sustainable crop and food production. The collection of soil data presents however obvious problems arising from sampling a dense, opaque and very heterogeneous medium. Conventional methods consisting of ground-based grid survey are laborious, expensive and lack appropriate spatial resolution to allow best farm management decision. Over the past 50 years, airborne geophy... L. Ameglio, E. Stettler, D. Eberle |