Topics
Filter results7 paper(s) found. |
---|
1. Prediction of Field-scale Evapotranspiration Using Process Based Modeling and Geostatistical Time-series InterpolationIrrigation scheduling depends on the combination of evaporative demand from the atmosphere, spatial and temporal heterogeneity in soil properties and changes in crop canopy during a growing season. This on-farm trial is based on data collected in 72-acre processing tomato field in Central Valley of California. The Multiband Spectrometric Arable Mark 2 sensors at three different locations in the field. Multispectral and thermal imagery provided by Ceres Imaging were collected eight times durin... G. Jha, F. Nazrul, M. Nocco, M. Pagé fortin, B. Whitaker, D. Diaz, A. Gal, R. Schmidt |
2. Assessing Soybean Water Stress Patterns and ENSO Occurrence in Southern Brazil: an in Silico ApproachWater stress (WS) is one of the most important abiotic stresses worldwide, responsible for crop yield penalties and impacting food supply. The frequency and intensity of weather stresses are relevant to delimitating agricultural regions. In addition, El Nino Southern Oscillation (ENSO) has been employed to forecast the occurrence of seasonal WS. Lastly, planting date and cultivar maturity selection are key management strategies for boosting soybean (Glycine max (L.) Merr.) y... A. Carcedo, L.F. Antunes de almeida, T. Horbe, G. Corassa, L.P. Pott, I. Ciampitti, G.D. Hintz, T. Hefley, R.A. Schwalbert, V. Prasad |
3. Evaluating the Potential of In-season Spatial Prediction of Corn Yield and Responses to Nitrogen by Combining Crop Growth Modeling, Satellite Remote Sensing and Machine LearningNitrogen (N) is a critical yield-limiting factor for corn (Zea mays L.). However, over-application of N fertilizers is a common problem in the US Midwest, leading to many environmental problems. It is crucial to develop efficient precision N management (PNM) strategies to improve corn N management. Different PNM strategies have been developed using proximal and remote sensing, crop growth modeling and machine learning. These strategies have both advantages and disadvantages. There is... X. Zhen, Y. Miao, K. Mizuta, S. Folle, J. Lu, R.P. Negrini, G. Feng, Y. Huang |
4. Spatio-temporal Variability of Intra-field Productivity Using Remote SensingUnderstanding the spatiotemporal variability in intra-farm productivity is crucial for management in making agronomic decisions. Furthermore, these decision-making processes can be enhanced using spatial data science and remote sensing. This study aims to develop a framework to asses the spatio-temporal variability of intra-farm productivity through historical satellite data and climate data. Historical satellite data and rainfall information from diverse fields across the United States (2016... E. Van versendaal, C. Hernandez, P. Kyveryga, I. Ciampitti |
5. Machine Learning Algorithms in Detecting Long-term Effect of Climatic Factors for Alfalfa Production in KansasThe water levels of the Ogallala Aquifer are depleting so much that agricultural land returns in Kansas are expected to drop by $34.1 million by 2050. It is imperative to understand how frequent droughts and the contrasting rates of groundwater withdrawal and recharge are affected by climate shifts in Kansas. Alfalfa, the ‘Queen of Forages’, is a water demanding crop which supplies high nutritional feed for beef industry that offered Kansas producers a $500 million production valu... F. Nazrul, J. Kim, S. Dey, S. Palla, D. Sihi, B. Whitaker, G. Jha |
6. Dimensionality Reduction and Similarity Metrics for Predicting Crop Yields in Sparse Data MicroclimatesThis study explores and develops new methodologies for predicting agricultural outcomes, such as crop yields, in microclimates characterized by sparse meteorological data. Specifically, it focuses on reducing the dimensionality in time series data as a preprocessing step to generate simpler and more explainable forecast models. Dimensionality reduction helps in managing large data sets by simplifying the information into more manageable forms without significant loss of information. We explor... L. Huender, M. Everett |
7. Using Simulation Modeling to Evaluate the Corn Response to Deficit Irrigation Imposed During Reproductive PeriodIn Alabama, as in many regions of the southeastern states, flash droughts and rising temperatures present significant challenges to the sustainability of agricultural systems. Specifically maize, a crop with a high water demand, faces production risks due to these adverse conditions. The study explores the optimum irrigation scheduling strategies on maize (Zea mays L.) in the reproductive growth stages through the evaluation of the impact of three irrigation treatments, defined by Maximum All... J.S. Velasco, B.V. Ortiz, L. Nunes, R. Prasad, G. Hoogenboom |