Login

Proceedings

Find matching any: Reset
Precision Carbon Management
Wireless Sensor Networks
Proximal Sensing in Precision Agriculture
Add filter to result:
Authors
Amaral, L.R
Amaral, L.R
Andersson, K
Arias, A.C
Astillo, P
Bajwa, S
Baumbauer, C
Belford, R
Bennett, S
Berti, M
Bodson, B
Borůvka, L
Brasco, T
Carlson, G
Carter, P.G
Chau, M
Cho, Y
Clay, D.E
Colaço, A.F
Collins, H.P
Demattê, J.M
Destain, M
Duft, D.G
Eitelwein, M.T
Ferraz, M.N
Follett, R
Fontenelli, J.V
Franco, H.C
Frizzel, L
Ge, Y
George, D
Gerighausen, H
Gholizadeh, A
Goffart, J
Goodrich, P.J
Green, S
Greene, J
Gritten, F
Grove, J
Harper, J
Heiniger, R
Huggins, D.R
Huggins, D.R
Kemanian, A.R
Kitchen, N
Kizer, E
Ko-Madden, C
Larbi, P.A
Leemans, V
Li, Y
Lianqing, Z
Lilienthal, H
Lilienthal, H
Long, D.S
Lund, E
Lund, T
Magalhaes, P.S
Magalhães, P.G
Maharlooei, M
Maja, J
Manfield, A
Marlier, G
Maxton, C
McEntee, P
Mercatoris, B
Mireei, S.A
Molin, J.P
Molin, J.P
Mouazen, A.M
Mouazen, D
Nawar, S.M
Nowatzki, J
Ozmen, S
Pena-Yewtukhiw, E.M
Perry, E.M
Peterson, G
Pierce, F
Pitrat, T
Reitsma, K.D
Rojo, F
Saberioon, M
Sanches, G
Sanches, G.M
Schneider, D
Schnug, E
Schnug, E
Schumacher, T.E
Sherrod, L.A
Shirzadi, A
Short, E
Sivarajan, S
Songchao, C
Sudduth, K
Sudduth, K.A
Tatge, J
Trevisan, R.G
Trotter, M
Trotter, M
Uberuaga, D.P
Upadhyaya, S.K
Vargas, M.R
Veum, K
Waine, D
Welch, M
Westfall, D
Whattoff, D
Wijewardane, N
Wilde, P
Yafei, Y
Young, S.L
Zhang, Q
Zhou, S
Topics
Precision Carbon Management
Proximal Sensing in Precision Agriculture
Wireless Sensor Networks
Type
Oral
Poster
Year
2010
2016
2022
Home » Topics » Results

Topics

Filter results33 paper(s) found.

1. Application Of Precision Agriculture In Carbon Farming Practices Using The Real-time Soil Sensor

... Y. Li

2. An Overview of Soil Carbon, Management, and Agricultural Systems

  Topics to be covered include a discussion of what soil carbon sequestration is, how and where in the soil it occurs, and its role in maintaining important soil properties. The author draws upon his experience and that of others about practices for various parts of the US to describe on-farm and experimental agricultural systems and their degree of success to sequester carbon and improve soil quality. Included is an overview of carbon sequestration strategies and pos... R. Follett, E. Short

3. Soil Organic Carbon Maintenance Requiremnets And Mineralizatyion Rate Constants: Site Specific Calcuations

  Over the past 100 years numerous studies have been conducted with the goal of quantifying the impact of management on carbon turnover. It is difficult to conduct a mechanistic evaluation of these studies because each study was conducted under unique soil, climatic, and management conditions.  Techniques for directly comparing data from unique studies are needed. This study discusses techniques for comparing data collected... D.E. Clay, G. Carlson, J. Tatge

4. On-combine Sensing Technique For Mapping Straw Yield Within Wheat Fields

Straw from production of wheat is available for conversion to bioenergy. However, not all of this straw is available for conversion because a certain amount must be returned to the soil for conservation. County and state-wide inventories do not account for variation within farm fields. In this study, a technique is described that applies information from on-combine crop sensors into estimation of straw yield across fields. Straw yiel... D.S. Long, ,

5. Modeling Soil Carbon Spatial Variation: Case Study In The Palouse Region

Soil organic carbon (Cs) levels in the soil profile reflect the transient state or equilibrium conditions determined by organic carbon inputs and outputs. In areas with strong topography, erosion, transport and deposition control de soil carbon balance and determine strong within-field differences in soil carbon. Carbon gains or losses are therefore difficult to predict for the average field. Total Cs ranged from 54 to 272 Mg C ha-1, with 42% (range 25 to 78%) of Cs in the top 0.3-m of the so... A.R. Kemanian, D.R. Huggins, D.P. Uberuaga

6. Performance Of The Veris Nir Spectrophotometer For Mapping Soil C In The Palouse Soils Of Eastern Washington

Recent advances in sensing technology have made measuring and mapping the dynamics of important soil properties that regulate carbon and nutrient budgets possible. The Veris Technologies (Salinas, KS) Near Infrared (NIR) Spectrometer is one of the first sensors available for collecting geo-referenced NIR soil spectra on-the-go. Field studies were conducted to evaluate the performance of the Veris NIR in wheat grown under both conventional and no-till management in the Palouse region of easter... F. Pierce, E.M. Perry, S.L. Young, H.P. Collins, P.G. Carter

7. Landscape Position And Climatic Gradient Impacts On Carbon Turnover in Dryland Cropping Systems in Colorado

  Soil organic carbon has decreased in cultivated wheat-fallow systems due to increased carbon oxidation, low carbon input and soil erosion.  Implementation of more intensive cropping with no-till management has reversed the trend in soil carbon loss.  Our objective in this presentation is to review the effects of landscape position on soil carbon status as related to intensification of cropping system.  Our analysis wi... G. Peterson, D. Westfall, L.A. Sherrod

8. C And N Coupling Through Time: Soil C, N, And Grain Yield In A Long-term Continuous Corn Trial

Gains and losses of both C and N are important in agricultural landscapes. Temporal changes in the pattern of crop yield response to tillage and fertilizer input are commonly observed; often weakly interpreted, in long-term research. A 38-year-long monoculture corn (Zea mays L.) tillage (moldboard plow, no-tillage) by N rate (0, 84, 168, 336 kg N per hectare) trial was sampled to a depth of 100 cm, as was the surround... J. Grove, E.M. Pena-yewtukhiw

9. Estimating Soil Productivity And Energy Efficiency Using Websoil Survey, Soil Productivity Index Calculator, And Biofuel Energy Systems Simulator

Soils have varying production capacities for a specific plant or sequence of plants under defined management strategies. The production capacity or “productivity” can be quantified as a mathematical function of a soils ability to sufficiently sustain plant ... K.D. Reitsma, T.E. Schumacher

10. Variability Of Carbon Sequestration In The Tidewater Region Of The Southeastern U.S.

In the southeastern US climatic conditions favor long periods of plant growth.  This combined with intense rainfall and poor drainage provides idea conditions for the conversion of plant biomass into organic matter.  This study combines the results of field experiments designed to  examine crop management practices that favor the development of soil organic carbon and organic matter with an examination of the causes for the extreme variability... R. Heiniger

11. Investigating Profile And Landscape Scale Variability In Soil Organic Carbon: Implications For Process-oriented Precision Management

Mitigation of rising greenhouse gases concentrations in the atmosphere has focused attention on agricultural soil organic C (SOC) sequestration. However, field scale knowledge of the processes and factors regulating SOC dynamics, distribution and variability is lacking. The objectives of this study are to characterize the pr... D.R. Huggins,

12. Memory Based Learning: A New Data Mining Approach to Model and Interpret Soil Texture Diffuse Reflectance Spectra

Successful estimation of spectrally active soil texture with Visible and Near-Infrared (VNIR, 400-1200 nm) and Short-Wave-Infrared (SWIR, 1200-2500 nm) spectroscopy depends mostly on the selection of an appropriate data mining algorithm. The aims of this paper were: to compare different data mining algorithms including Partial Least Squares Regression (PLSR), which is the most common technique in soil spectroscopy, Support Vector Machine Regression (SVMR), Boosted Regression Trees (BRT), and ... A. Gholizadeh, M. Saberioon, L. Borůvka

13. Detection of Nitrogen Stress on Winter Wheat by Multispectral Machine Vision

Hand-held sensors (SPAD meter, N-Tester, …) used for detecting the leaves nitrogen  concentration (Nc) present several drawbacks. The nitrogen concentration is gained by an indirect way through the chlorophyll concentration and the leaves have to be fixed in a defined position for the measurements. These drawbacks could be overcome by an imaging device that measures the canopy reflectance. Hence, the objective of the paper is to analyse the potential of multispectral imaging for d... M. Destain, V. Leemans, G. Marlier, J. Goffart, B. Bodson, B. Mercatoris, F. Gritten

14. NIR Spectroscopy to Map Quality Parameters of Sugarcane

Precision Agriculture aims to explore the potential of each crop considering the differences within the field. One information that is considered the most important is the yield or the obtained income in the field. However, in the case of sugarcane, quality will also directly influence farmer’s income. Several studies suggest harvester automation aiming to monitor yield, but few consider the quality analysis in the process. Among the existing methods for measuring sugar content the one ... M.N. Ferraz, J.P. Molin

15. A Multi Sensor Data Fusion Approach for Creating Variable Depth Tillage Zones.

Efficiency of tillage depends largely on the nature of the field, soil type, spatial distribution of soil properties and the correct setting of the tillage implement.  However, current tillage practice is often implemented without full understanding of machine design and capability leading to lowered efficiency and further potential damage to the soil structure. By modifying the physical properties of soil only where the tillage is needed for optimum crop growth, variable depth tillage (... D. Whattoff, D. Mouazen, D. Waine

16. Proximal Sensing of Leaf Temperature and Microclimatic Variables to Implement Precision Irrigation in Almond and Grape Crops

Irrigation decisions based on traditional soil moisture sensing often leads to uncertainty regarding the true amount of water available to the plant. Plant based sensing of water stress decreases this uncertainty. In specialty crops grown in California’s Central Valley, precision deficit irrigation based on plant water stress could be used to decrease water use and increase water use efficiency by supplying the necessary quantity of water only when it is needed by the plant. However, th... E. Kizer, S.K. Upadhyaya, F. Rojo, S. Ozmen, C. Ko-madden, Q. Zhang

17. Mapping Spatial Production Stability in Integrated Crop and Pasture Systems: Towards Zonal Management That Accounts for Both Yield and Livestock-landscape Interactions.

Precision farming technologies are now widely applied within Australian cropping systems. However, the use of spatial monitoring technologies to investigate livestock and pasture interactions in mixed farming systems remains largely unexplored. Spatio-temporal patterns of grain yield and pasture biomass production were monitored over a four-year period on two Australian mixed farms, one in the south-west of Western Australia and the other in south-east Australia. A production stability index ... P. Mcentee, S. Bennett, M. Trotter, R. Belford, J. Harper

18. Proximal Hyperspectral Sensing in Plant Breeding

The use of remote sensing in plant breeding is challenging due to the large number of small parcels which at least actually cannot be measured with conventional techniques like air- or spaceborne sensors. On the one hand crop monitoring needs to be performed frequently, which demands reliable data availability. On the other hand hyperspectral remote sensing offers new methods for the detection of vegetation parameters in crop production, especially since methods for safe and efficient detecti... H. Lilienthal, P. Wilde, E. Schnug

19. Non-destructive Plant Phenotyping Using a Mobile Hyperspectral System to Assist Breeding Research: First Results

Hybrid plants feature a stronger vigor, an increased yield and a better environmental adaptability than their parents, also known as heterosis effect. Heterosis of winter oilseed rape is not yet fully understood and conclusions on hybrid performance can only be drawn from laborious test crossings. Large scale field phenotyping may alleviate this process in plant breeding. The aim of this study was to test a low-cost mobile ground-based hyperspectral system for breeding research to e... H. Gerighausen, H. Lilienthal, E. Schnug

20. Estimation of Soil Profile Properties Using a VIS-NIR-EC-force Probe

Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. Other common soil sensors include penetrometers that measure soil strength and apparent electrical conductivity (ECa) sensors. Previous field research has related those sensor measuremen... Y. Cho, K.A. Sudduth

21. Laboratory Evaluation of Two VNIR Optical Sensor Designs for Vertical Soil Sensing

Visible and near infrared reflectance spectroscopy (VNIR) is becoming an extensively researched technology to predict soil properties such as soil organic carbon, inorganic carbon, total nitrogen, moisture  for precision agriculture. Due to its rapid, non-destructive nature and ability to infer multiple soil properties simultaneously, engineers have been trying to develop proximal sensors based on the VNIR technology to enable horizontal soil sensing and mapping. Since the vertical varia... N. Wijewardane, Y. Ge

22. Development of Micro-tractor-based Measurement Device of Soil Organic Matter Using On-the-go Visual-near Infrared Spectroscopy in Paddy Fields of South China

Soil organic matter (SOM) is an essential soil property for assessing the fertility of paddy soils in South China. In this study, a set of micro-tractor-based on-the-go device was developed and integrated to measure in-situ soil visible and near infrared (VIS–NIR) spectroscopy and estimate SOM content. This micro-tractor-based on-the-go device is composed of a micro-tractor with toothed-caterpillar band, a USB2000+ VIS–NIR spectroscopy detector, a self-customized steel plow and a ... Z. Lianqing, S. Zhou, C. Songchao, Y. Yafei

23. Development of a Sensing Device for Detecting Defoliation in Soybean

Estimating defoliation by insects in an agricultural field, specifically soybean, is performed by manually removing multiple leaf samples, visually inspecting the leaves for feeding, and assigning a value representing a “best guess” at the level of leaf material missing. These estimates can require considerable time and are subjective. The goal of this study was to design a low-cost system containing light sensors and a microcontroller that could remotely record and report long-te... P. Astillo, J. Maja, J. Greene

24. Evaluating low-cost Lidar and Active Optical Sensors for pasture and forage biomass assessment

Accurate and reliable assessment of pasture or forage biomass remains one of the key challenges for grazing industries. Livestock managers require accurate estimates of the grassland biomass available over their farm to enable optimal stocking rate decisions. This paper reports on our investigations into the potential application of affordable Lidar (Light Detection and Ranging) systems and Active Optical (reflectance) Sensors (AOS) to estimate pasture biomass. We evaluated the calibration ac... M. Trotter, K. Andersson, M. Welch, M. Chau, L. Frizzel, D. Schneider

25. Sensor Based Soil Health Assessment

Quantification and assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high cost, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolution soil health data. Therefore, sensor-based approaches are important to facilitate cost-effective, site-specific management for soil health. In the Central Claypan Region, visible, near-infrared ... K. Veum, K. Sudduth, N. Kitchen

26. Soil Attributes Estimation Based on Diffuse Reflectance Spectroscopy and Topographic Variability

The local management of crop areas, which is the basic concept of precision agriculture, is essential for increasing crop yield. In this context, diffuse reflectance spectroscopy (DRS) and digital elevation modelling (DEM) appears as an important technique for determining soil properties, on an adequate scale to agricultural management, enabling faster and less costly evaluations in soil studies. The objective of this work was to evaluate the use of DRS together with topographic parameters fo... J.V. fontenelli, L.R. Amaral, J.M. Demattê, P.G. Magalhães, G. Sanches

27. Apparent Electrical Conductivity Sensors and Their Relationship with Soil Properties in Sugarcane Fields

One important tool within the technological precision agriculture (PA) package are the apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-m... G.M. Sanches, L.R. Amaral, T. Pitrat, T. Brasco, P.S. Magalhaes, D.G. Duft, H.C. Franco

28. On-the-go Measurements of pH in Tropical Soil

The objective of this study was to assess the performance of a mobile sensor platform with ion-selective antimony electrodes (ISE) to determine pH on-the-go in a Brazilian tropical soil. The field experiments were carried out in a Cambisol in Piracicaba-SP, Brazil. To create pH variability, increasing doses (0, 1, 3, 5, 7 and 9 Mg ha-1) of lime were added on the experimental plots (25 x 10 m) one year before the data acquisitions. To estimate soil pH levels we used a Mobile Sensor ... M.T. Eitelwein, R.G. Trevisan, A.F. Colaço, M.R. Vargas, J.P. Molin

29. Comparing Predictive Performance of Near Infrared Spectroscopy at a Field, Regional, National and Continental Scales by Using Spiking and Data Mining Techniques

The development of accurate visible and near infrared (vis-NIR) spectroscopy calibration models for selected soil properties is a crucial step for variable rate application in precision agriculture. The objective of the present study was to compare the prediction performance of vis-NIR spectroscopy at local, regional, national and continental scales using data mining techniques including spiking. Fresh soil samples collected from farms in the UK, Czech Republic, Germany, Denmark and the Nethe... S.M. Nawar, A.M. Mouazen, D. George, A. Manfield

30. Time Series Study of Soybean Response Based on Adjusted Green Red Index

Four time-lapse cameras, Bushnell Nature View HD Camera (Bushnell, Overland Park, KS) were installed in a soybean field to track the response of soybean plants to solar radiation, air temperature, relative humidity, soil surface temperature, and soil temperature at 5-cm depth. The purpose was to confirm if visible spectroscopy can provide useful data for tracking the condition of crops and, if so, whether game and trail time-lapse cameras can serve as reliable crop sensing and monitoring devi... P.A. Larbi, S. Green

31. A Data Fusion Method for Yield and Soil Sensor Maps

Utilizing yield maps to their full potential has been one of the challenges in precision agriculture.  A key objective for understanding patterns of yield variation is to derive management zones, with the expectation that several years of quality yield data will delineate consistent productivity zones.  The anticipated outcome is a map that shows where soil productive potentials differ.  In spite of the widespread usage of yield monitors, commercial agriculture has found it dif... E. Lund, C. Maxton, T. Lund

32. Vis/NIR Spectroscopy to Estimate Crude Protein (CP) in Alfalfa Crop: Feasibility Study

The fast and reliable quality determination of alfalfa crop is of interest for producers to make management decisions, the dealers to determine the price, and the dairy producers for livestock management. In this study, the crude protein (CP), one of the main quality indices of alfalfa, was estimated using the visible and near-infrared (Vis/NIR) spectroscopy. A total of 68 samples from various variety trials of alfalfa crop were collected under the irrigated and rainfed conditions. The diffus... M. Maharlooei, S. Bajwa, S.A. Mireei, A. Shirzadi, S. Sivarajan, M. Berti, J. Nowatzki

33. A Passive-RFID Wireless Sensor Node for Precision Agriculture

Accurate soil data is crucial for precision agriculture.  While existing optical methods can correlate soil health to the gasses emitted from the field, in-soil electronic sensors enable real-time measurements of soil conditions at the effective root zone of a crop. Unfortunately, modern soil sensor systems are limited in what signals they can measure and are generally too expensive to reasonably distribute the sensors in the density required for spatially accurate feedback.  In thi... P.J. Goodrich, C. Baumbauer, A.C. Arias