Proceedings
Authors
| Filter results8 paper(s) found. |
|---|
1. Early Detection of Oil Palm Fungal Disease Infestation Using A Mid-Infrared Spectroscopy TechniqueBasal stem rot (BSR) caused by Ganoderma boninense is known as the most destructive disease of oil palm plantations in Southeast Asia. Ganoderma could potentially reduce the market share of palm oil for Malaysia. Currently Malaysia produces about 50% of the world’s supply of palm oil. Early, accurate, and non-destructive diagnosis of Ganoderma fungal infection is critical for management of this disease. Early disease management of Ganoderma could also prevent great losses in production and... S. Liaghat, S. Mansor, H. Shafri, S. Meon, R. Ehsani, S. Azam, N. Noh |
2. Processing Yield Data from Two or More CombinesErroneous data affect the quality of yield map. Data from combines working close to each other may differ widely if one of the monitors is not properly calibrated and this difference has to be adjusted before generating the map. The objective of this work was to develop a method to correct the yield data when running two or more combines in which at least one has the monitor not properly calibrated. The passes of each combine were initially identified and three methods to correct yield data were... L. Maldaner, J.P. Molin, T.F. Canata |
3. Static and Kinematic Tests for Determining Spreaders Effective WidthSpinner box spreaders are intensively used in Brazil for variable rate applications of lime in agriculture. The control of that operation is a challenging issue because of the complexity involved on the interactions between product and machine. Quantification of transverse distribution of solids thrown from the spinner box spreaders involves dynamic conditions tests where the material deposited on trays is evaluated along the pass of the machinery. There is a need of alternative testing methods... L. Maldaner, T. Canata, J. Molin, B. Passalaqua, J.J. Quirós |
4. Identifying and Filtering Out Outliers in Spatial DatasetsOutliers present in the dataset is harmful to the information quality contained in the map and may lead to wrong interpretations, even if the number of outliers to the total data collected is small. Thus, before any analysis, it is extremely important to remove these errors. This work proposes a sequential process model capable of identifying outlier data when compared their neighbors using statistical parameters. First, limits are determined based on the median range of the values of all the... L. Maldaner, J. Molin, T. Tavares, L. Mendez, L. Corrêdo, C. Duarte |
5. Optimizing Nitrogen Application to Maximize Yield and Reduce Environmental Impact in Winter Wheat ProductionField-specific fertilizer rate optimization is known to be beneficial for improving farming profit, and profits can be further improved by dividing the field into smaller plots and applying site-specific rates across the field. Finding optimal rates for these plots is often based on data gathered from said plots, which is used to determine a yield response curve, telling us how much fertilizer needs to be applied to maximize yield. In related work, we use a Convolutional Neural Network, known... A. Peerlinck, J. Sheppard, G.L. Morales luna, P. Hegedus, B. Maxwell |
6. Comparative Analysis of Light-weight Deep Learning Architectures for Soybean Yield Estimation Based on Pod Count from Proximal Sensing Data for Mobile and Embedded Vision ApplicationsCrop yield prediction is an important aspect of farming and food-production. Therefore, estimating yield is important for crop breeders, seed-companies, and farmers to make informed real-time financial decisions. In-field soybean (Glycine max L.(Merr.)) yield estimation can be of great value to plant breeders as they screen thousands of plots to identify better yielding genotypes that ultimately will strengthen national food security. Existing soybean yield estimation tools,... J.J. Mathew, P.J. Flores, J. Stenger, C. Miranda, Z. Zhang, A.K. Das |
7. Creating a Comprehensive Software Framework for Sensor-driven Precision AgricultureRobots and GPS-guided tractors are the backbone of smart farming and precision agriculture. Many companies and vendors contribute to the market, each offering their own customized solutions for common tasks. These developments are often based on vendor-specific, proprietary components, protocols and software. Many small companies that produce sensors, actuators or software for niche applications could contribute their expertise to the global efforts of creating smart farming solutions, if their... O. Scholz, F. Uhrmann, M. Weule, T. Meyer, A. Gilson, J. Makarov, J. Hansen, T. Henties |
8. 3D Computer Vision with a Spatial-temporal Neural Network for Lameness Detection of SowsThe lameness of sows is one of the biggest concerns for swine producers, which can lead to considerable economic losses due to reduced productivity and welfare. There is a real need for early detection of lameness in sows to enable timely intervention and minimize loss. Currently, lame detection relies on visual observation and locomotion scoring of sows, which is subjective, labor-intensive, and difficult to conduct for large groups of animals within a short time. This study presents 3D computer... Y. Wang, Y. Lu, D. Morris, M. Benjamin, M. Lavagnino, J. Mcintyre |