Proceedings

Find matching any: Reset
Murrell, S
Wu, B
Nazrul, F
Mansouri, M
Moyle, J
Neupane, J
Quaderer, J
Montull, J.M
Maréchal, P
Add filter to result:
Authors
Lebeau, F
Massinon, M
Maréchal, P
Boukhalfa, H
Li, Z
Wu, B
Meng, J
Quaderer, J
Coonen, J
Lange, A
Pauly, K
Zeng, H
Wu, B
Yan, N
Baklouti, I
Mansouri, M
Destain, M
Hamida, A
Goeringer, P
Ellixson, A
Moyle, J
Rund, Q
Murrell, S
Erbe, A
Williams, R
Williams, E
Morris, T
Tremblay, N
Kyveryga, P.M
Clay, D.E
Murrell, S
Ciampitti, I
Thompson, L
Mueller, D
Seger, J
Rydahl, P
Boejer, O
Torresen, K
Montull, J.M
Taberner, A
Bückmann, H
Verschwele, A
Neupane, J
Joshi, N
Fulton, J.P
Khanal, S
B K, A
Bhattarai, B
Jha, G
Nazrul, F
Nocco, M
Pagé Fortin, M
Whitaker, B
Diaz, D
Gal, A
Schmidt, R
Dey, S
Nugent, P
Neupane, J
Nazrul, F
Kim, J
Dey, S
Palla, S
Sihi, D
Whitaker, B
Jha, G
Topics
Precision Crop Protection
Remote Sensing Applications in Precision Agriculture
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Spatial Variability in Crop, Soil and Natural Resources
Spatial Variability in Crop, Soil and Natural Resources
Unmanned Aerial Systems
Big Data Mining & Statistical Issues in Precision Agriculture
Standards & Data Stewardship
Decision Support Systems
Site-Specific Nutrient, Lime and Seed Management
Weather and Models for Precision Agriculture
Artificial Intelligence (AI) in Agriculture
Type
Poster
Oral
Year
2012
2014
2016
2022
2024
Home » Authors » Results

Authors

Filter results13 paper(s) found.

1. The Effect of Leaf Orientation on Spray Retention on Blackgrass

Spray application efficiency depends on the pesticide application method as well as target properties. A wide range of drop impact angles exists during the spray application process because of drop trajectory and the variability of the leaf orientation. As the effect of impact angle on retention is still poorly documented, laboratory studies were conducted... F. Lebeau, M. Massinon, P. Maréchal, H. Boukhalfa

2. Design, Development And Application Of A Satellite-Based Field Monitoring System To Support Precision Farming

The factual base of precision agriculture (PA) - the spatial and temporal variability of soil and crop factors within or between different fields has been recognized for centuries. Field information on seeding suitability, soil & crop nutrition status and crop mature date is needed to optimize field management. How to acquire the spatially and temporally varied field parameters accurately, efficiently and at affordable cost has always been the focus of the researches in the field.... Z. Li, B. Wu, J. Meng

3. Applying Conventional Vegetation Vigor Indices To UAS-Derived Orthomosaics: Issues And Considerations

In recent years, unmanned airborne systems (UAS) have gained a lot of interest for their potential use in precision agriculture. While the imagery from near-infrared (NIR) enabled off-the-shelf cameras included in UAS can be directly used to facilitate crop scouting, the application in quantitative analyses remains cumbersome. The ultimate goal is to calculate (nitrogen) prescription maps from vegetation indices obtained from UAS imagery, but two main issues hamper this workflow: (1) the... J. Quaderer, J. Coonen, A. Lange, K. Pauly

4. A Method To Estimate Irrigation Efficiency With Evapotranspiration Data

Irrigation efficiency is defined as the ratio of irrigation water consumed by the crops to the water diverted (Wg) from a river or reservoir or wells. This terminology serves for better irrigation systems designation and irrigation management practices improvement. But it is hard or high cost with labor intensity to estimate irrigation efficiency from field measurement. This paper proposes an estimating method of irrigation efficiency at the scale of irrigation... H. Zeng, B. Wu, N. Yan

5. Estimating Environmental Systems Using Iterated Sigma Point Techniques: a Biomass Substrate Hypothetical System

This paper addresses the problem of biomass substrate hypothetical system estimation using sigma points kalman filter (SPKF) methods. Various conventional and state-of-theart state estimation methods are compared for the estimation performance, namely the unscented Kalman filter(UKF), the central difference Kalman filter (CDKF), the square-root unscented Kalman filter (SRUKF), the square-root central difference Kalman filter (SRCDKF), the iterated unscented Kalman filter (IUKF), the iterated central... I. Baklouti, M. Mansouri, M. Destain, A. Hamida

6. Privacy Issues and the Use of UASs/Drones in Maryland

 According to the Federal Aviation Administration (FAA), the lawful use of Unmanned Aerial Vehicles (UAV), also known as Unmanned Aircraft Systems (UAS), or more commonly as drones, are currently limited to military, research, and recreational applications. Under the FAA’s view, commercial uses of drones are illegal unless approved by the Federal government.  This will change in the future.  Congress authorized the FAA to develop regulations for the use of drones by private... P. Goeringer, A. Ellixson, J. Moyle

7. North American Soil Test Summary

With the assistance and cooperation of numerous private and public soil testing laboratories, the International Plant Nutrition Institute (IPNI) periodically summarizes soil test levels in North America (NA). Soil tests indicate the relative capacity of soil to provide nutrients to plants. Therefore, this summary can be viewed as an indicator of the nutrient supplying capacity or fertility of soils in NA. This is the eleventh summary completed by IPNI or its predecessor, the Potash &... Q. Rund, S. Murrell, A. Erbe, R. Williams, E. Williams

8. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

9. Economic Potential of IPMwise – a Generic Decision Support System for Integrated Weed Management in 4 Countries

Reducing use and dependency on pesticides in Denmark has been driven by political action plans since the 1980ies, and a series of nationally funded accompanying R&D programs were completed in the period 1989-2006. One result of these programs was a decision support system (DSS) for integrated weed management. The 4th generation (2016) of the agro-biological models and IT-tools in this DSS, named IPMwise. The concept of IPMwise is to systematically exploit that: occurrence... P. Rydahl, O. Boejer, K. Torresen, J.M. Montull, A. Taberner, H. Bückmann, A. Verschwele

10. Assessing Crop Yield and Profitability with Site-specific Seed Rate Management in Corn and Soybean Cropping Systems

Integrating the information about soil and topographic properties for variable rate seeding is a prerequisite for improved crop production and thus profit. However, limited studies have explored the geospatial and machine learning approaches to understand factors influencing crop yield and profit under site-specific seed rate management. The objectives of this study were to: a) observe the effect of variable seeding rate based on soil and topographic properties on soybean and corn grain yield,... J. Neupane, N. Joshi, J.P. Fulton, S. Khanal, A. B k, B. Bhattarai

11. Prediction of Field-scale Evapotranspiration Using Process Based Modeling and Geostatistical Time-series Interpolation

Irrigation scheduling depends on the combination of evaporative demand from the atmosphere, spatial and temporal heterogeneity in soil properties and changes in crop canopy during a growing season. This on-farm trial is based on data collected in 72-acre processing tomato field in Central Valley of California. The Multiband Spectrometric Arable Mark 2 sensors at three different locations in the field. Multispectral and thermal imagery provided by Ceres Imaging were collected eight times during... G. Jha, F. Nazrul, M. Nocco, M. Pagé fortin, B. Whitaker, D. Diaz, A. Gal, R. Schmidt

12. Using Machine Vision to Build Field Maps of Forage Quality and the Need for Agriculture-specific Machine Vision Networks

Machine vision systems have truly come of age over the past decade. These networks are relatively simple to implement with systems such as YOLOv5 or the more recent YOLOv8. They are also relatively easy and computationally cheap to retrain to a custom data set, allowing for customization of these networks to new object detection and classification tasks. With this ease, it is no surprise that we are seeing an explosion of these networks and their application through all aspects of agriculture.... P. Nugent, J. Neupane

13. Machine Learning Algorithms in Detecting Long-term Effect of Climatic Factors for Alfalfa Production in Kansas

The water levels of the Ogallala Aquifer are depleting so much that agricultural land returns in Kansas are expected to drop by $34.1 million by 2050. It is imperative to understand how frequent droughts and the contrasting rates of groundwater withdrawal and recharge are affected by climate shifts in Kansas. Alfalfa, the ‘Queen of Forages’, is a water demanding crop which supplies high nutritional feed for beef industry that offered Kansas producers a $500 million production value... F. Nazrul, J. Kim, S. Dey, S. Palla, D. Sihi, B. Whitaker, G. Jha