Proceedings
Authors
| Filter results4 paper(s) found. |
|---|
1. Young Leaf Detection for Spot Spray Treatment of Citrus Canopies to Control PsyllidsHuanglongbing (HLB) is an important disease of citrus that is spread mainly through a vector, psyllid (Diaphorina citri), that feeds predominantly on young leaves. Given the selective feeding of the insect, treating only the young flush, instead of spraying the entire... R. Ehsani, M. Salyani, J.M. Maja, A.R. Mishra, P.A. Larbi, J. Camargo neto |
2. CropSAT - a Public Satellite-based Decision Support System for Variable-rate Nitrogen Fertilization in ScandinaviaCropSAT is a free-to-use web application for satellite-based production of variable-rate application (VRA) files of e.g. nitrogen (N) and fungicides currently available in Sweden and Denmark. Even in areas frequently covered by clouds, vegetation index maps from data derived from low-cost or freely available optical satellites can be used in practice as a cost-efficient tool in time-critical applications such as optimized nitrogen use. During the very cloudy year 2015, or more useable images... M. Söderström, H. Stadig, J. Martinsson, M. Stenberg, K. Piikki |
3. Obstacle-aware UAV Flight Planning for Agricultural ApplicationsThe use of unmanned aerial vehicles (UAVs) has emerged as one of the most important transformational tools in modern agriculture, offering unprecedented opportunities for crop monitoring, management, and optimization. To ensure effective and safe navigation in agricultural environments, robust obstacle avoidance capabilities are required to mitigate collision risks and to ensure efficient operations. Mission planners for UAVs are typically responsible for verifying that the vehicle is following... K. Joseph, S. Pitla, V. Muvva |
4. Implementation of Autonomous Material Re-filling Using Customized UAV for Autonomous Planting OperationsThis project introduces a groundbreaking use case for customized Unmanned Aerial Vehicles (UAVs) in precision agriculture, focused on achieving holistic autonomy in agricultural operations through multi-robot collaboration. Currently, commercially available drones for agriculture are restrictive in achieving collaborative autonomy with the growing number of unmanned ground robots, limiting their use to narrow and specific tasks. The advanced payload capacities of multi-rotor UAVs,... V. Muvva, H. Mwunguzi, S. Pitla, K. Joseph |