Proceedings
Authors
| Filter results11 paper(s) found. |
|---|
1. Hyperspectral Imaging Of Sugar Beet Symptoms Caused By Soil-borne OrganismsThe soil-borne pathogen Rhizoctonia solani and the plant parasitic nematode Heterodera schachtii are the most important constraints in sugar beet production worldwide. Symptoms caused by fungal infection are yellowing of leaves and rotting of the beet tuber late in the cropping season. Nematode afflicted plants show stunted growth early in the cropping season and also leaf wilting late in the season when water stress often sets in. Due to the low mobility of soil-borne organisms, they are ideal... C. Hillnhuetter, A. Mahlein, R.A. Sikora, E. Oerke |
2. Citrus Greening Disease Detection Using Airborne Multispectral And Hyperspectral ImagingCitrus greening disease (Huanglongbing or HLB) has become a major catastrophic disease in Florida’s $9 billion citrus industry since 2005, and continued to be spread to other parts of the U.S. There is no known cure for this disease. As of October 2009, citrus trees in 2,702 different sections (square mile) in 34 counties were infected in Florida. A set of hyperspectral imageries were used to develop disease detection algorithms using image-derived spectral library, the mixture tuned... W. Lee, A. Kumar, R. Ehsani, C. Yang, L.G. Albrigo, |
3. Mapping the Leaf Area Index In Vineyard Using a Ground-Based LIDAR ScannerThe leaf area index (LAI) is defined as the one-sided leaf area per unit ground area and is probably the most widely used index to characterize grapevine vigour. However, direct LAI measurement requires the use of destructive leaves sampling methods which are costly and time-consuming and so are other indirect methods. Faced with these techniques, vineyard leaf area can be indirectly estimated using ground-based LIDAR sensors that scan the vines and get information about the geometry and/or structure... J. Arno, I. Del moral, A. Escolà , J. Company, J.A. MartÍnez-casasnovas, J. Masip, R. Sanz, J.R. Rosell |
4. Spatial and Temporal Variability of Corn Grain Yield as a Function of Soil Parameters, and Climate FactorsEffective site-specific management requires an understanding the influence of soil and weather on yield variability. Our objective was to examine the influence of soil, precipitation, and temperature on spatial and temporal corn grain yield variability. The study site (10 by 250 -m in size) was located in Jaboticabal, São Paulo State, on a Rhodic Hapludox. Corn yield (planted with 0.9-m spacing) was measured... T. Mueller, J. Corá, A. Castrignanò, M. Rodrigues, E. Rienzi |
5. Near-Real-Time Remote Sensing And Yield Monitoring Of Biomass CropsThe demand for bioenergy crops production has increased tremendously by the biofuel industry for substitution of traditional fuels due to the economic availability and environmental benefits. Pre-Harvest monitoring of biomass production is necessary to develop optimized instrumentation and data processing systems for crop growth, health and stress monitoring; and to develop algorithms for field operation scheduling. To cope with the problems of missing critical... Y. Zhao, L. Li, K.C. Ting, L.F. Tian, T. Ahamed |
6. The Most Sensitive Growth Stage To Quantify Nitrogen Stress In Sugarcane Using Active Crop Canopy SensorThe use of sensors that allow the application of nitrogen fertilizer at variable rate has been widely used by researchers in many agricultural crops, but without success in sugarcane, probably due to the difficulty of diagnosing the nutritional status of the crop for nitrogen (N). Active crop canopy sensors are based on the principle that the spectral reflectance curve of the leaves are modified by N level. Researchers in USA indicated that in-season N stress in corn can be detected... S.G. Castro, O.T. Kolln, H.S. Nakao, H.C. Franco, O. Braunbeck, P.S. Graziano magalhães, G.M. Sanches |
7. Increasing Corn (Zea Mays L.) Profitability by Site-Specific Seed and Nutrient Management in Igmand-Kisber Basin, HungaryVariable Rate Technology (VRT) in seeding and nutrient management has been developed in order to apply crop inputs variably. Farm equipment is widely available to manage in-field variability in Hungary, however, defining management zones, seed rates and amounts of nutrients is still a challenge. An increasing number of growers in Hungary have started adopting precision agriculture technology; however, data on profitability concerning site-specific seeding and nitrogen management is not widely... G. Milics, S. Szabó, K. Bűdi, A. Takács, V. Láng, S. Zsebo |
8. Transforming Precision Agriculture Education, Research and Outreach in Sub-saharan Africa Through Intra-africa CooperationProductivity and profitability of sub-Saharan (SSA) agriculture can be enhanced greatly through the adoption of precision agriculture technologies and tools. However, until 2020 when the African Plant Nutrition Institute (APNI) established the African Association for Precision Agriculture (AAPA), most SSA PA enthusiast worked in isolation. The AAPA was formed to innovate Africa’s agricultural industry by connecting PA science to its practice and disseminate PA tailored to the needs... K.A. Frimpong, S. Phillips, V. Aduramigba-modupe, N. Fassinou hotegni, M. Mechri, M. Mishamo, J.M. Sogbedji, Z. hazzoumi, R. Chikowo, M. Fodjo kamdem |
9. Assessing Crop Yield and Profitability with Site-specific Seed Rate Management in Corn and Soybean Cropping SystemsIntegrating the information about soil and topographic properties for variable rate seeding is a prerequisite for improved crop production and thus profit. However, limited studies have explored the geospatial and machine learning approaches to understand factors influencing crop yield and profit under site-specific seed rate management. The objectives of this study were to: a) observe the effect of variable seeding rate based on soil and topographic properties on soybean and corn grain yield,... J. Neupane, N. Joshi, J.P. Fulton, S. Khanal, A. B k, B. Bhattarai |
10. Using Machine Vision to Build Field Maps of Forage Quality and the Need for Agriculture-specific Machine Vision NetworksMachine vision systems have truly come of age over the past decade. These networks are relatively simple to implement with systems such as YOLOv5 or the more recent YOLOv8. They are also relatively easy and computationally cheap to retrain to a custom data set, allowing for customization of these networks to new object detection and classification tasks. With this ease, it is no surprise that we are seeing an explosion of these networks and their application through all aspects of agriculture.... P. Nugent, J. Neupane |
11. Remote and Proximal Sensing for Sustainable Water Use in Almond Orchards in Southeast Spain in a Digital Farming ContextThe increasing expansion of irrigated almond orchards in regions of southeast Spain, facing water scarcity, underscores the need for a more effective and precise monitoring of the crop water status to optimize irrigation scheduling and improve crop water use efficiency. Remote and proximal sensing, combining visible, multispectral and thermal capabilities at different scales allows to estimate water needs, detect and quantify crop water stress, or identify different productivity zones within an... |