Proceedings
Authors
| Filter results14 paper(s) found. |
|---|
1. Thematic And Profitability Maps For Precision AgricultureYield maps became economically feasible to farmers with the technological advances in precision agriculture. The evidence of its profitability, however, is still unknown and, rarely, yield variability has been correlated to profitable variability. Differently from... E.G. Souza, C.L. Bazzi, M.A. Uribe-opazo |
2. Isobus Demonstrator And Working Environment For Agricultural Engineering EducationISOBUS is the international standard for communication on agricultural equipment. In practice, however, a manufacturer independent tractor-implement communication is still a significant problem. This aspect has been identified as a major hindrance for the transfer of research results into products for precision farming. As a consequence the ISOBUS standard should strongly be included in education and research, which is the focus of this work. In... A. Ruckelshausen, T. Dzinaj, T. Kinder, D. Bosse, R. Klose |
3. Site Specific Costs Concerning Machine Path OrientationComputer algorithms have been created to simulate in advance the orientation/pattern of a machine operation on a field. Undesired impacts were obtained and quantified for these simulations, like: maneuvering and overlap of inputs in headlands; servicing of secondary units; and soil loss by water erosion. While the efforts could minimize the overall costs, they disregard the fact that these costs aren’t uniformly distributed over irregular fields. The cost of a non-productive machine process... M. Spekken, J.P. Molin, T.L. Romanelli, M.N. Ferraz |
4. Can Optimization Associated with On-Farm Experimentation Using Site-Specific Technologies Improve Producer Management Decisions?Crop production input decisions have become increasingly difficult due to uncertainty in global markets, input costs, commodity prices, and price premiums. We hypothesize that if producers had better knowledge of market prices, spatial variability in crop response, and weather conditions that drive crop response to inputs, they could more cost-effectively make profit-maximizing input decisions. Understanding the drivers of variability in crop response and designing accompanying management strategies... B.D. Maxwell, A. Bekkerman, N. Silverman, R. Payn, J. Sheppard, C. Izurieta, P. Davis, P.B. Hegedus |
5. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US MidwestEffective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan |
6. Automated In-field Ornamental Nursery Plant Counting and Quality Assessment with End-to-end Deep Learning for Inventory ManagementEfficient inventory management and rigorous quality evaluation play crucial roles for monitoring sales, yield, space utilization, production schedules, and quality enhancements in the ornamental nursery sector. The current method for conducting inventory and quality assessments is through manual plant counting, even when dealing with thousands of plants. The prevailing approach is inefficient, time consuming, labor intensive, potential inaccuracies, and high expenses. Given the continuous decrease... H.H. Syed, T. Rehman |
7. AI-based Pollinator Using CoreXY RobotThe declining populations of natural pollinators pose a significant ecological challenge, often attributed to the adverse effects of pesticides and intensive farming practices. To address the critical issue of pollination in the face of diminishing natural pollinators, we are pioneering an AI-based pollinator that utilizes a CoreXY pollination system. This solution aims to augment pollination efforts in agriculture, increasing yields and crop quality while mitigating the adverse impacts of pesticide... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett |
8. AI-based Precision Weed Detection and EliminationWeeds are a significant challenge in agriculture, competing with crops for resources and reducing yields. Addressing this issue requires efficient and sustainable weed elimination systems. This paper presents a comprehensive overview of recent advancements in weed elimination system development, focusing on innovative technologies and methodologies. Specifically, it details the development and integration of a weed detection and elimination system based on the CoreXY architecture, implemented... H. Kulhandjian, M. Kulhandjian, D. Rocha, B. Bennett |
9. AI-based Fruit Harvesting Using a Robotic ArmFruit harvesting stands as a pivotal and delicate process within the agricultural industry, demanding precision and efficiency to ensure both crop quality and overall productivity. Historically reliant on manual labor, this labor-intensive endeavor has taken a significant leap forward with the advent of autonomous jointed robots and Artificial Intelligence (AI). Our project aims to usher in a new era in fruit harvesting, leveraging advanced technology to perform this essential task autonomously... H. Kulhandjian, N. Amely, M. Kulhandjian |
10. A High-throughput Phenotyping System Evaluating Salt Stress Tolerance in Kale Plants Cultivated in Aquaponics EnvironmentsMonitoring plant growth in a controlled environment is crucial to make informed decisions for various management practices such as fertilization, weed control, and harvesting. Agronomic, physiological, and architectural traits in kale plants (Brassica oleracea) are important to producers, breeders, and researchers for assessing the performance of the plants under biotic and abiotic stresses. Traditionally, architectural, and morphological traits have been used to monitor plant growth. However,... T. Rehman, M. Rahman, E. Ayipio, D. Lukwesa, J. Zheng, D. Wells, H.H. Syed |
11. Digital Agriculture Driven by Big Data Analytics: a Focus on Spatio-temporal Crop Yield Stability and Land ProductivityIn the ever-evolving landscape of agriculture, the adoption of digital technologies and big data analytics has ushered in a transformative era known as digital agriculture. This paradigm shift is primarily motivated by the pressing imperative to address the growing global population's food requirements, mitigate the adverse effects of climate change, and promote sustainable land management. Canada, a significant player in global food production, has made a substantial commitment to reducing... K. Nketia, T. Ha, H. Fernando, S. Shirtliffe, S. Van steenbergen |
12. Almonds and Pistachios: Sustaining Legacy, Innovations, and Nutritional Advancements in CaliforniaCalifornia's unique Mediterranean climate has made it the global epicenter for tree nut production, providing nearly 99 percent of the nation’s almond and pistachio supply. The California tree nut industry is characterized by its deep-rooted heritage, with 90% of its farms being family-owned and operated, often spanning multiple generations. These farmers have been at the forefront of agricultural innovation, investing approximately millions of dollars annually in scientific research... H. Kulhandjian, S. Asci |
13. Integrated Data-driven Decision Support SystemsSite-specific and data-driven decision support systems in agriculture are evolving fast with the rapid advancements in cutting-edge technologies such as Agricultural Artificial Intelligence (AgAI) and big data integration. Data driven decision support systems have the potential to revolutionize various aspects of farming, from crop monitoring and precision management decisions to the way growers interact with complex technologies. The AgAI decision support-based systems excel at analyzing... L.A. Puntel, P. Pellegrini, S. Joalland , J. Rattalino, L. Vitantonio |
14. Vegetation Coverage Specific Flower Density Estimation in Blackberry Using Unmanned Aerial Vehicle (UAV) Remote SensingThe effective management of agricultural systems relies on the utilization of accurate data collection techniques to analyze essential crop attributes to enhance productivity and ensure profits. Data collection procedures for specialty horticultural crops are mostly subjective, time consuming and may not be accurate for management decisions in both phenotypic studies and crop production. Reliable and repeatable standard methods are therefore needed to capture and calculate attributes of horticultural... A. Tagoe, C. Koparan, A. Poncet, D.M. Johnson, M. Worthington, D. Wang |