Proceedings

Find matching any: Reset
Nafziger, E.D
Maidl, F
Mohd Soom, M
Nault, J
Matocha, C
Marin-Barrero, C
Nugent, P
Matthews- Njoku, E.C
McEntee, P
Maidl, F.X
Mbakwe, I
Quanbeck, J
Maggi, M.F
McVeagh, P.J
Add filter to result:
Authors
Gholizadeh , A
Mohd Soom , M
Saberioon, M
Gholizadeh, A
Saberioon, M
Mohd Soom, M
Asiabaka, C.C
Adesope, M.O
Ifeanyi- Obi, C.C
Nwakwasi, R.N
Nnadi, F
Matthews- Njoku, E.C
Chikaire, J
Mueller, T
Matocha, C
Sikora, F
Mijatovic, B
Rienzi, E
Strenner, M
Maidl, F
Betzek, N.M
Souza, E.G
Bazzi, C.L
Schenatto, K
Gavioli, A
Maggi, M.F
McEntee, P
Bennett, S
Trotter, M
Belford, R
Harper, J
Yule, I.J
Grafton, M.C
Willis, L.A
McVeagh, P.J
Yule, I.J
Pullanagari, R.R
Kereszturi, G
Irwin, M.E
McVeagh, P.J
Cushnahan, T
White, M
Strenner, M
Maidl, F.X
Hülsbergen, K.J
Bean, G.M
Kitchen, N.R
Camberato, J.J
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Sawyer, J.E
Scharf, P.C
Perez-Ruiz, M
Apolo-Apolo, E
Egea, G
Martinez-Guanter, J
Marin-Barrero, C
Marmette, M
Adamchuk, V
Nault, J
Tabatabai, S
Cocciardi, R
Rai, N
Zhang, Y
Quanbeck, J
Christensen, A
Sun, X
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Brorsen, W
Poursina, D
Patterson, C
Mieno, T
Edge, B
Nafziger, E.D
Nugent, P
Neupane, J
Asgedom, H
Hehar, G
Willness, C
Anderson, W
Duddu, H
Mooleki, P
Schoenau, J
Khakbazan, M
Lemke, R
Derdall, E
Shang, J
Liu, K
Sulik, J
Karppinen, E
Mbakwe, I
Topics
Sensor Application in Managing In-season Crop Variability
Remote Sensing Applications in Precision Agriculture
Food Security and Precision Agriculture
Precision Conservation and Carbon Management
Remote Sensing Applications in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Proximal Sensing in Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
In-Season Nitrogen Management
Big Data, Data Mining and Deep Learning
ISPA Community: Nitrogen
On Farm Experimentation with Site-Specific Technologies
Artificial Intelligence (AI) in Agriculture
Site-Specific Nutrient, Lime and Seed Management
Type
Poster
Oral
Year
2012
2010
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results18 paper(s) found.

1. Comparison Of Different Vegetation Indices And Their Suitability To Describe N-uptake In Winter Wheat For Precision Farming

To avoid environment pollution and to minimize the costs of using mineral fertilizers an efficient fertilization system, tailored to the plant needs becomes more and more important. For that, the essential information can be determined by detecting certain crop parameters, like dry matter of the plant biomass above ground, N-content and N-uptake. By using fluorescence and reflectance measurements of the canopy and the mathematical analysis these parameters are appreciable. In three years,... M. Strenner, F. Maidl

2. Estimation of Nitrogen of Rice in Different Growth Stages Using Tetracam Agriculture Digital Camera

Many methods are available to monitor nitrogen content of rice during various growth stages. However, this monitoring still requires a quick, simple, accurate and inexpensive technique that needs to be developed. In this study, Tetracam Agriculture Digital Camera (ADC) was used to acquire high spatial and temporal resolution in order to determine the status of nitrogen (N) and predict the grain yield of rice (Oriza sativa L.). In this study, 12 pots of rice with four different N treatments (0, 125,... A. Gholizadeh , M. Mohd soom , M. Saberioon

3. Potential of Visible and Near Infrared Spectroscopy for Prediction of Paddy Soil Physical Properties

A fast and convenient soil analytical technique is needed for soil quality assessment and precision soil management. The main objective of this study was to evaluate the ability of Visible (Vis) and Near-infrared Reflectance Spectroscopy (NIRS) to predict paddy soil physical properties in a typical Malaysian paddy field. To assess the utility of spectroscopy for soil physical characteristics prediction, we used 118 soil samples for laboratory analysis and optical measurement in the Vis-NIR region... A. Gholizadeh, M. Saberioon, M. Mohd soom

4. Enhancing Farmers' Indigenous Knowledge Management in Cassava Varietal Trial Using Agro Ecosystem Analysis, Farmers' Drama Group and Animations in Eastern part of Nigeria.

Researchers continue to come up with new varieties but farmer perspectives and preferences are very important factors for new varieties to spread in farmers’ communities. Researcher priorities alone are not enough. A variety may be ‘scientifically perfect... C.C. Asiabaka, M.O. Adesope, C.C. Ifeanyi- obi, R.N. Nwakwasi, F. Nnadi, E.C. Matthews- njoku, J. Chikaire

5. Soil Organic Carbon Multivariate Predictions Based on Diffuse Spectral Reflectance: Impact of Soil Moisture

Spatial predictions of soil organic carbon (OC) developed with proximal and remotely sensed diffuse reflectance spectra are complicated by field soil moisture variation. Our objective was to determine how moisture impacted spectral reflectance and Walkley-Black OC predictions. Soil reflectance from the North American Proficiency Testing... T. Mueller, C. Matocha, F. Sikora, B. Mijatovic, E. Rienzi

6. Rectification of Management Zones Considering Moda and Median As a Criterion for Reclassification of Pixels

Management zones (MZ) make economically viable the application of precision agriculture techniques by dividing the production areas according to the homogeneity of its productive characteristics. The divisions are conducted through empirical techniques or cluster analysis, and, in some cases, the MZ are difficult to be delimited due to isolated cells or patches within sub-regions. The objective of this study was to apply computational techniques that provide smoothing of MZ, so as to become viable... N.M. Betzek, E.G. Souza, C.L. Bazzi, K. Schenatto, A. Gavioli, M.F. Maggi

7. Mapping Spatial Production Stability in Integrated Crop and Pasture Systems: Towards Zonal Management That Accounts for Both Yield and Livestock-landscape Interactions.

Precision farming technologies are now widely applied within Australian cropping systems. However, the use of spatial monitoring technologies to investigate livestock and pasture interactions in mixed farming systems remains largely unexplored. Spatio-temporal patterns of grain yield and pasture biomass production were monitored over a four-year period on two Australian mixed farms, one in the south-west of Western Australia and the other in south-east Australia. A production stability index was... P. Mcentee, S. Bennett, M. Trotter, R. Belford, J. Harper

8. Measuring Pasture Mass and Quality Indices Over Time Using Proximal and Remote Sensors

Traditionally pasture has been measured or evaluated in terms of a dry matter yield estimate, which has no reference to other important quality factors. The work in this paper measures pasture growth rates on different slopes and aspects and pasture quality through nitrogen N% and metabolizable energy and ME concentration. It is known that permanent pasture species vary greatly in terms of quality and nutritional value through different stages of maturity. Pasture quality decreases as grass tillers... I.J. Yule, M.C. Grafton, L.A. Willis, P.J. Mcveagh

9. Hyperspectral Imaging to Measure Pasture Nutrient Concentration and Other Quality Parameters

Managing pasture nutrient requirements on large hill country sheep and beef properties based on information from soil sampling is expensive because of the time and labor involved. High levels of error are also expected as these properties are often greatly variable and it is therefore extremely difficult to sample intensively enough to capture this variation. Extensive sampling was also not considered viable as there was no effective means of spreading fertilizer with a variable rate capability... I.J. Yule, R.R. Pullanagari, G. Kereszturi, M.E. Irwin, P.J. Mcveagh, T. Cushnahan, M. White

10. Nitrogen Sensing by Using Spectral Reflectance Measurements in Cereal Rye Canopy

Cereal rye (cereale secale L.) is a winter crop well suited for cultivation especially besides high yield areas because of its relatively low demands on the soil and on the climate as well. In 2016 about 4.9% of arable land in Germany was cultivated with cereal rye (Statistisches Bundesamt, 2017). Unlike other crops such as wheat, there is little research on cereal rye for site specific farming. Furthermore, also in a cereal rye cultivation it is necessary to minimize nitrogen loss.... M. Strenner, F.X. Maidl, K.J. Hülsbergen

11. Corn Nitrogen Fertilizer Recommendation Models Based on Soil Hydrologic Groups Aid in Predicting Economically Optimal Nitrogen Rates

Nitrogen (N) fertilizer recommendations that match corn (Zea mays L.) N needs maximize grower profits and minimize water quality consequences. However, spatial and temporal variability makes determining future N requirements difficult. Studies have shown no single soil or weather measurement is consistently increases accuracy, especially when applied over a regional scale, in predicting economically optimal N rate (EONR). Basing site N response on soil hydrological group could help account for... G.M. Bean, N.R. Kitchen, J.J. Camberato, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf

12. Feasibility of Estimating the Leaf Area Index of Maize Traits with Hemispherical Images Captured from Unmanned Aerial Vehicles

Feeding a global population of 9.1 billion in 2050 will require food production to be increased by approximately 60%. In this context, plant breeders are demanding more effective and efficient field-based phenotyping methods to accelerate the development of more productive cultivars under contrasting environmental constraints. The leaf area index (LAI) is a dimensionless biophysical parameter of great interest to maize breeders since it is directly related to crop productivity. The LAI is defined... M. Perez-ruiz, E. Apolo-apolo, G. Egea, J. Martinez-guanter, C. Marin-barrero

13. Comparison of the Performance of Two Vis-NIR Spectrometers in the Prediction of Various Soil Properties

Spectroscopy has shown capabilities of predicting certain soil properties. Hence, it is a promising avenue to complement traditional wet chemistry analysis that is costly and time-consuming. This study focuses on the comparison of two Vis-NIR instruments of different resolution to assess the effect of the resolution on the ability of an instrument to predict various soil properties. In this study, 798 air dried and compressed soil samples representing different agro-climatic conditions across... M. Marmette, V. Adamchuk, J. Nault, S. Tabatabai, R. Cocciardi

14. Spotweeds: a Multiclass UASs Acquired Weed Image Dataset to Facilitate Site-specific Aerial Spraying Application Using Deep Learning

Unmanned aerial systems (UASs)-based spot spraying application is considered a boon in Precision Agriculture (PA). Because of spot spraying, the amount of herbicide usage has reduced significantly resulting in less water contamination or crop plant injury. In the last demi-decade, Deep Learning (DL) has displayed tremendous potential to accomplish the task of identifying weeds for spot spraying application. Also, most of the ground-based weed management technologies have relied on DL techniques... N. Rai, Y. Zhang, J. Quanbeck, A. Christensen, X. Sun

15. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

16. Using Informative Bayesian Priors and On-farm Experimentation to Predict Optimal Site-specific Nitrogen Rates

Most U.S. Corn Belt states now recommend the Maximum Return to Nitrogen (MRTN) method for determining optimal nitrogen rates, which is based on 15 years of on-farm yield response to nitrogen trials. The MRTN method recommends a uniform rate for a region of a state. This study combines Illinois MRTN data, Bayesian methods, and on-farm experimentation from the Data Intensive Farm Management (DIFM) project to provide site-specific nitrogen recommendations. On-farm trials are now being used to provide... W. Brorsen, D. Poursina, C. Patterson, T. Mieno, B. Edge, E.D. Nafziger

17. Using Machine Vision to Build Field Maps of Forage Quality and the Need for Agriculture-specific Machine Vision Networks

Machine vision systems have truly come of age over the past decade. These networks are relatively simple to implement with systems such as YOLOv5 or the more recent YOLOv8. They are also relatively easy and computationally cheap to retrain to a custom data set, allowing for customization of these networks to new object detection and classification tasks. With this ease, it is no surprise that we are seeing an explosion of these networks and their application through all aspects of agriculture.... P. Nugent, J. Neupane

18. Response of Canola and Wheat to Application of Enhanced Efficiency Nitrogen Fertilizers on Contrasting Management Zones

Investment on nitrogen (N) fertilizers is a major cost of growers, and variable rate (VR) application of N fertilizers could help optimize its usage. In the growing season of 2023, field experiments were conducted at four sites (i.e., Watrous – Saskatchewan SK and two fields in the vicinity of Strathmore, Alberta AB, Canada). The main objectives were to (i) determine performance of Enhanced Efficiency N Fertilizers - EENF (i.e., Coated urea, urea with double inhibitors - DI, urea mixed with... H. Asgedom, G. Hehar, C. Willness, W. Anderson, H. Duddu, P. Mooleki, J. Schoenau, M. Khakbazan, R. Lemke, E. derdall, J. Shang, K. Liu, J. Sulik, E. Karppinen, I. Mbakwe