Proceedings

Find matching any: Reset
McNairn, H
Mahjoub, O.A
Wilde, P
Waine, D
Freitas, A.A
Nielsen, M.B
Nielsen, R.L
Nafziger, E
Add filter to result:
Authors
Bortolon, L
Borghi, E
Luchiari Junior, A
Bortolon, E.S
Freitas, A.A
Inamasu, R.Y
Avanzi, J.C
Mahjoub, O.A
Modaihsh, A.S
Whattoff, D
Mouazen, D
Waine, D
Lilienthal, H
Wilde, P
Schnug, E
Ransom, C.J
Bean, M
Kitchen, N
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Kitchen, N.R
Yost, M.A
Ransom, C.J
Bean, G
Camberato, J
Carter, P
Ferguson, R
Fernandez, F
Franzen, D
Laboski, C
Nafziger, E
Sawyer, J
Kross, A
Kaur, G
Callegari, D
Lapen, D
Sunohara, M
McNairn, H
Rudy, H
van Vliet, L
Kross, A
Kaur, G
Znoj, E
Callegari, D
Sunohara, M
McNairn, H
Lapen, D
Rudy, H
van Vliet, L
Rydahl, P
Boejer, O
Jensen, N
Hartmann, B
Jorgensen, R
Soerensen, M
Andersen, P
Paz, L
Nielsen, M.B
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Topics
Profitability, Sustainability and Adoption
Precision Conservation and Carbon Management
Proximal Sensing in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
In-Season Nitrogen Management
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Crop Protection
In-Season Nitrogen Management
Type
Poster
Oral
Year
2012
2016
2018
2022
Home » Authors » Results

Authors

Filter results10 paper(s) found.

1. Adoption and Tendencies of Precision Agriculture Technologies in the Tocantins State, Brazil

Although precision agriculture is widely used throughout Brazilian crop production, it has not been used to increase the efficiency use of agricultural inputs. Besides, technologies available have not been... L. Bortolon, E. Borghi, A. Luchiari junior, E.S. Bortolon, A.A. Freitas, R.Y. Inamasu, J.C. Avanzi

2. Soil Salinity, Sand Encroachment and Erosion as Indicators of Land Degradation in Harad Center, Saudi Arabia

This study presents the main results of a thorough evaluation of land degradation in Saudi Arabia (Harad Centre). The study was carried out in 2006-2007 as part of a project aimed to study features and causes of land degradation in Saudi Arabia. The study area occupies... O.A. Mahjoub, A.S. Modaihsh

3. A Multi Sensor Data Fusion Approach for Creating Variable Depth Tillage Zones.

Efficiency of tillage depends largely on the nature of the field, soil type, spatial distribution of soil properties and the correct setting of the tillage implement.  However, current tillage practice is often implemented without full understanding of machine design and capability leading to lowered efficiency and further potential damage to the soil structure. By modifying the physical properties of soil only where the tillage is needed for optimum crop growth, variable depth tillage (VDT)... D. Whattoff, D. Mouazen, D. Waine

4. Proximal Hyperspectral Sensing in Plant Breeding

The use of remote sensing in plant breeding is challenging due to the large number of small parcels which at least actually cannot be measured with conventional techniques like air- or spaceborne sensors. On the one hand crop monitoring needs to be performed frequently, which demands reliable data availability. On the other hand hyperspectral remote sensing offers new methods for the detection of vegetation parameters in crop production, especially since methods for safe and efficient detection... H. Lilienthal, P. Wilde, E. Schnug

5. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

6. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer Response

Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three growing... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer

7. Spatial Decision Support System: Controlled Tile Drainage – Calculate Your Benefits

Climate projection studies suggest that extreme heat waves and floods will become more frequent, affecting future crop yields by 20%-30%, globally. Managing vulnerability and risk begins at the farm level where best management practices can reduce the impacts associated with extreme weather events. A practice that can assist in mitigating the impact of some extreme events is controlled tile drainage (CTD). With CTD, producers use water flow control structures to manage the drainage of water from... A. Kross, G. Kaur, D. Callegari, D. Lapen, M. Sunohara, H. Mcnairn, H. Rudy, L. Van vliet

8. Evaluation of an Artificial Neural Network Approach for Prediction of Corn and Soybean Yield

The ability to predict crop yield during the growing season is important for crop income, insurance projections and for evaluating food security. Yet, modeling crop yield is challenging because of the complexity of the relationships between crop growth and the interrelated predictor variables. Artificial neural networks (ANNs) are useful for such complex systems as they can capture non-linear relationships of data without explicitly knowing the underlying processes. In this study, an ANN-based... A. Kross, G. Kaur, E. Znoj, D. Callegari, M. Sunohara, H. Mcnairn, D. Lapen, H. Rudy, L. Van vliet

9. Economic Potential of RoboWeedMaps - Use of Deep Learning for Production of Weed Maps and Herbicide Application Maps

In Denmark, a new IPM ‘product chain’ has been constructed, which starts with systematic photographing of fields and ends up with field- or site-specific herbicide application. A special high-speed camera, mounted on an ATV took sufficiently good pictures of small weed plants, while driving up to 50 km/h. Pictures were uploaded to the RoboWeedMaps online platform, where appointed internal- and external persons with agro-botanical experience executed ‘virtual field inspection’... P. Rydahl, O. Boejer, N. Jensen, B. Hartmann, R. Jorgensen, M. Soerensen, P. Andersen, L. Paz, M.B. Nielsen

10. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor