Proceedings
Authors
| Filter results6 paper(s) found. |
|---|
1. Integrated Approach to Site-specific Soil Fertility ManagementIn precision agriculture the lack of affordable methods for mapping relevant soil attributes is a fundamental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor |
2. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in CornRemotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia |
3. Estimating Corn Biomass from RGB Images Acquired with an Unmanned Aerial VehicleAbove-ground biomass, along with chlorophyll content and leaf area index (LAI), is a key biophysical parameter for crop monitoring. Being able to estimate biomass variations within a field is critical to the deployment of precision farming approaches such as variable nitrogen applications. With unprecedented flexibility, Unmanned Aerial Vehicles (UAVs) allow image acquisition at very high spatial resolution and short revisit time. Accordingly, there has been an increasing interest in... K. Khun, P. Vigneault, E. Fallon, N. Tremblay, C. Codjia, F. Cavayas |
4. Rape Plant NDVI Spatial Distribution Model Based on 3D ReconstructionPlants’ morphology changes in their growing process. The 3D reconstruction of plant is of great significance for studying the impacts of plant morphology on biomass estimation, illness and insect infestation, genetic expression, etc. At present, the 3D point cloud reconstructed through 3D reconstruction mainly includes the morphology, color and other features of the plant, but cannot reflect the change in spatial 3D distribution of organic matters caused by the nutritional status (e.g. chlorophyll... Y. Chen, Y. He |
5. Spatial and Temporal Variability of Soil Biological and Chemical Parameters Following the Introduction of Cover Crops into a Conventional Corn-cotton Rotational SystemMethods to characterize soil microbial diversity and abundance are labor intensive and require destructive sampling that incurs a per unit cost. There are advantages to replacing current methods with remote sensing approaches; the most obvious of which is spatially explicit representation of microbes on agricultural landscapes. Such a method will ultimately address open questions related to (1) the spatial scale of variability in soil microbial activity, and (2) the behavior of microbes in cover... J. Czarnecki, J.P. Brooks, M.C. Reeks, J. Hu |
6. Predicting Soil Cation Exchange Capacity from Satellite Imagery Using Random Forest ModelsCrop yield variability is often attributed to spatial variation in soil properties. Remote sensing offers a practical approach to capture soil surface properties over large areas, enabling the development of detailed soil maps. This study aimed to predict cation exchange capacity (CEC), a key indicator of soil quality, in the agricultural fields of the Lower Mississippi Alluvial Valley using digital soil mapping techniques. A total of 15,586 soil samples were collected from agricultural fields... I. Muller, J. Czarnecki, M. Li, B.K. Smith |