Proceedings

Find matching any: Reset
Cammarano, D
Cross, T
Correndo, A
Claussen, J
Mijatovic, B
Mohd Hanif, A
Moreira, W
Cordova Gonzalez, C
Craker, B.E
Maglh, P.S
Mendez, L
Chabot, V
CHANDRASHEKAR , C.P
Munkhbayar, S
Add filter to result:
Authors
Abu Kassim, F
Vadamalai, G
Mohd Hanif, A
Balasundram, S.K
Basso, B
Fiorentino, C
Cammarano, D
D'Errico, A
Mueller, T
Gianello, E
Mijatovic, B
Rienzi, E
Rodrigues, M
Mueller, T
Matocha, C
Sikora, F
Mijatovic, B
Rienzi, E
Rodrigues Jr, F
Maglh, P.S
Cerri, D.G
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Potdar, M.P
Balol, G.B
SATYAREDDI, S.A
NADAGOUDA , B.T
CHANDRASHEKAR , C.P
Maldaner, L
Molin, J
Tavares, T
Mendez, L
Corrêdo, L
Duarte, C
Kablan, L
Chabot, V
Mailloux, A
Bouchard, M
Fontaine, D
Bruulsema, T
Tumenjargal, E
Batbayar, E
Munkhbayar, S
Tsogt-Ochir, S
Oyumaa, M
Chung, K
Ham, W
Balasundram, S.K
Chong, Y
Mohd Hanif, A
Claussen, J
Wörlein, N
Uhlmann, N
Gerth, S
Cammarano, D
Drexler, D
Hinsinger, P
Martre, P
Draye, X
Sessitsch, A
Pecchioni, N
Cooper, J
Helga, W
Voicu, A
Danford, D.D
Nelson, K.J
Rhea, S.T
Stelford, M.W
Ferreyra, R
Wilson, J.A
Craker, B.E
Souza, E.G
Bazzi, C
Hachisuca, A
Sobjak, R
Gavioli, A
Betzek, N
Schenatto, K
Mercante, E
Rodrigues, M
Moreira, W
Aikes Junior, J
Souza, E.G
Bazzi, C
Sobjak, R
Hachisuca, A
Gavioli, A
Betzek, N
Schenatto, K
Moreira, W
Mercante, E
Rodrigues, M
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Bhandari, S
Acosta, M
Cordova Gonzalez, C
Raheja, A
Sherafat, A
Hernandez, C
Kyveryga, P
Correndo, A
Prestholt, A
Ciampitti, I
Bathke, K.J
Cross, T
Luck, J.D
Stansell, J
Luck, J.D
Cross, T
Bathke, K.J
Smith, T
Hernandez, C
Correndo, A
Lacasa, J
Magalhaes Cisdeli, P
Nocera Santiago, G.N
Ciampitti, I
Topics
Precision Crop Protection
Remote Sensing Applications in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Precision Conservation and Carbon Management
Spatial Variability in Crop, Soil and Natural Resources
Standards & Data Stewardship
Site-Specific Nutrient, Lime and Seed Management
Geospatial Data
Robotics, Guidance and Automation
Precision Horticulture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Big Data, Data Mining and Deep Learning
Decision Support Systems
In-Season Nitrogen Management
Artificial Intelligence (AI) in Agriculture
Digital Agriculture Solutions for Soil Health and Water Quality
In-Season Nitrogen Management
Decision Support Systems
Type
Poster
Oral
Year
2012
2010
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results22 paper(s) found.

1. Spatial Variability Analyse And Correlation Between Physical Chemical Soil Attributes And Sugarcane Quality Parameters

With the high increment in the ethanol demand, the trend is that the planted area with sugar cane in Brazil will increase from the actual 7 million ha up to 12 million ha in 15 years. The sugar cane expansion demands, beyond the enlargement of the boundaries with the installation of new industrial units, better use of the production areas and improvement of the yield and quality, together with production costs reduction. In such a way, the adoption of Precision Agriculture... F. Rodrigues jr, P.S. Maglh, D.G. Cerri

2. A Non-Destructive Method of Estimating Red Tip Disease in Pineapple

Red Tip disease typically reduces pineapple yields by up to 50%. At present, the causal agent of Red Tip disease is still unconfirmed. B... F. Abu kassim, G. Vadamalai, A. Mohd hanif, S.K. Balasundram

3. Understanding Spatial and Temporal Variability of Wheat Yield: An Integrated System Approach

Spatial variation in soil water and nitrogen are often the causes of crop yield spatial variability due to their influence on the uniformity of plant stand at emergence and for in-season stresses. Natural and acquired variability in production capacity or potential within a field causes uniform agronomic management practices for the field to be correct in some parts and inappropriate in others. To achieve... B. Basso, C. Fiorentino, D. Cammarano, A. D'errico

4. On-The-Go pH Sensor: An Evaluation in a Kentucky Field

A commercially available on-the-go soil pH sensor measures and maps subsurface soil pH at high spatial intensities across managed landscapes.  The overall purpose of this project was to evaluate the potential for this sensor to be used in agricultural fields. The specific goals were to determine and evaluate 1) the accuracy with which this instrument can be calibrated, 2) the geospatial structure of soil pH measurements,... T. Mueller, E. Gianello, B. Mijatovic, E. Rienzi, M. Rodrigues

5. Soil Organic Carbon Multivariate Predictions Based on Diffuse Spectral Reflectance: Impact of Soil Moisture

Spatial predictions of soil organic carbon (OC) developed with proximal and remotely sensed diffuse reflectance spectra are complicated by field soil moisture variation. Our objective was to determine how moisture impacted spectral reflectance and Walkley-Black OC predictions. Soil reflectance from the North American Proficiency Testing... T. Mueller, C. Matocha, F. Sikora, B. Mijatovic, E. Rienzi

6. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

7. Soil Spatial Variability Assessment and Precision Nutrient Management in Maize (Zea Mays L.)

Investigations on soil spatial variability and precision nutrient management based targeted yield approach in maize was carried out at Agricultural research station (ARS), Mudhol (Karnataka), India under irrigated condition during 2013-14, 2014-15 and 2015-16. ARS, Mudhol is located in northern dry zone of Karnataka at 160 20! N latitude, 750 15! E longitude and at an altitude of 577.6 meter above mean sea level. To assess the spatial variability, the study area was divided into 20 x20 m size... M.P. Potdar, G.B. Balol, S.A. Satyareddi, B.T. Nadagouda , C.P. Chandrashekar

8. Identifying and Filtering Out Outliers in Spatial Datasets

Outliers present in the dataset is harmful to the information quality contained in the map and may lead to wrong interpretations, even if the number of outliers to the total data collected is small. Thus, before any analysis, it is extremely important to remove these errors. This work proposes a sequential process model capable of identifying outlier data when compared their neighbors using statistical parameters. First, limits are determined based on the median range of the values of all the... L. Maldaner, J. Molin, T. Tavares, L. Mendez, L. Corrêdo, C. Duarte

9. Variability in Corn Yield Response to Nitrogen Fertilizer in Quebec

Optimizing nitrogen (N) fertilization is important to improve corn yield and to reduce N losses to the environment. The economic optimum nitrogen rate  (EONR) is variable and depends on many factors, including weather conditions and crop management.  The main objective of this study was to examine how grain corn yield response to N varies with planting date, soil texture and spring weather across sites and years in Monteregie, which is the most important with 64% of total area and 69%... L. Kablan, V. Chabot, A. Mailloux, M. Bouchard, D. Fontaine, T. Bruulsema

10. Design and Analysis of ISO 11783 Task Controller's Functionality in Server - Client ECU for Agricultural Vehicles

A modern agricultural vehicle's electronic control units (ECU) communicated based on the ISO 11783 standards. The connection of different machines, implements, different manufacturers into a single bus for the exchange of control commands and sensor data are a challenge for the precision agriculture. One of main functionality is the Task controller in the intelligent monitoring system. The task controller is to log data and assign set-point values for automated work (task) sequences... E. Tumenjargal, E. Batbayar, S. Munkhbayar, S. Tsogt-ochir, M. Oyumaa, K. Chung, W. Ham

11. Monitoring Potassium Levels in Peat-Grown Pineapple Using Selected Spectral Ratios

In this study, we assessed the biophysical changes within pineapple (var. MD2) in response to different potassium (K) rates using a hyperspectral approach. K deficiency was detected at 171 days after planting. Shortage of K also exhibited a shift in red edge towards shorter wavelengths between 500-700 nm. In addition, spectral ranges of 430 nm and 680 nm, as well as 680-752 nm were found to be most effective in differentiating spectral response to varying K rates. Three vegetation indices, i.e.... S.K. Balasundram, Y. Chong, A. Mohd hanif

12. Quantification of Seed Performance: Non-Invasive Determination of Internal Traits Using Computed Tomography

The application of the 3D mean-shift filter to 3D Computed Tomography Data enables the segmentation of internal traits. Specifically in maize seeds this approach gives the opportunity to separate the internal structure, for example the volume of the embryo, the cavities and the low and high dense parts of the starch body. To evaluate the mean-shift filter, the results were compared to the usage of a median-smoothing filter. To show the relevance of the mean-shift extended image pipeline an automatic... J. Claussen, N. Wörlein, N. Uhlmann, S. Gerth

13. Shared Protocols and Data Template in Agronomic Trials

Due to the overlap of many disciplines and the availability of novel technologies, modern agriculture has become a wide, interdisciplinary endeavor, especially in Precision Agriculture. The adoption of a standard format for reporting field experiments can help researchers to focus on the data rather than on re-formatting and understanding the structure of the data. This paper describes how a European consortium plans to: i) create a “handbook” of protocols for reporting definitions,... D. Cammarano, D. Drexler, P. Hinsinger, P. Martre, X. Draye, A. Sessitsch, N. Pecchioni, J. Cooper, W. Helga, A. Voicu

14. ADAPT: A Rosetta Stone for Agricultural Data

Modern farming requires increasing amounts of data exchange among hardware and software systems. Precision agriculture technologies were meant to enable growers to have information at their fingertips to keep accurate farm records (and calculate production costs), improve decision-making and promote effi­cien­cies in crop management, enable greater traceability, and so forth. The attainment of these goals has been limited by the plethora of proprietary, incompatible data formats among... D.D. Danford, K.J. Nelson, S.T. Rhea, M.W. Stelford, R. Ferreyra, J.A. Wilson, B.E. Craker

15. AgDataBox: Web Platform of Data Integration, Software, and Methodologies for Digital Agriculture

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. Digital agriculture enables the flow of information... E.G. Souza, C. Bazzi, A. Hachisuca, R. Sobjak, A. Gavioli, N. Betzek, K. Schenatto, E. Mercante, M. Rodrigues, W. Moreira

16. Web Application for Automatic Creation of Thematic Maps and Management Zones - AgDataBox-Fast Track

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture (DA) has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. DA enables information to flow from used agricultural... J. Aikes junior, E.G. Souza, C. Bazzi, R. Sobjak, A. Hachisuca, A. Gavioli, N. Betzek, K. Schenatto, W. Moreira, E. Mercante, M. Rodrigues

17. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

18. Leveraging UAV-based Hyperspectral Data and Machine Learning Techniques for the Detection of Powderly Mildew in Vineyards

This paper presents the development and validation of machine learning models for the detection of powdery mildew in vineyards. The models are trained and validated using custom datasets obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The dataset consists of the images of vineyards with marked regions for powdery mildew, meticulously annotated using LabelImg. ... S. Bhandari, M. Acosta, C. Cordova gonzalez, A. Raheja, A. Sherafat

19. Spatial Predictive Modeling to Quantify Soybean Seed Quality Using Remote Sensing and Machine Learning

In recent years, the advancement of artificial intelligence technologies combined with satellite technology is revolutionized agriculture through the development of algorithms that help producers become more sustainable. This could improve the conditions of farmers not only by maximizing their production and minimizing environmental impact but also due to better economic benefits by allowing them to access high-value-added markets. Furthermore, the use of predictive tools that could improve the... C. Hernandez, P. Kyveryga, A. Correndo, A. Prestholt, I. Ciampitti

20. Fertigation Management Strategies Effect on Residual Nitrates in the Soil Profile and Ground Water

Nitrogen is an input that is vital for growth and productivity within the corn belt states of the U.S. However, when nitrogen as an input into agricultural cropping systems is often over-applied and thus not optimally utilized by the cropping system. Therefore, it is at risk of loss within the environment through processes of leaching, denitrification, and volatilization. This is a major concern in Nebraska, as the reality is that much of the state’s groundwater has been contaminated with... K.J. Bathke, T. Cross, J.D. Luck

21. Sensor Based Fertigation Management

Sensor-based fertigation management (SBFM) is a relatively new technology for directing nitrogen (N) decisions, specifically tailored for delivery of N via center pivot irrigation systems (fertigation). The development of SBFM began in 2018 at the University of Nebraska-Lincoln with the help of cooperating producers across the state. Over two dozen field sites provided testbeds for the development and evaluation of the technology. The key technique in this fertigation approach is the... J. Stansell, J.D. Luck, T. Cross, K.J. Bathke, T. Smith

22. From Scientific Literature to the End User: Democratizing Access to Data Products Through Interactive Applications

In recent years, the sustained advance in the creation of powerful programming libraries is allowing not only the creation of complex models with predictive capabilities but also revolutionizing visualization processes and the deployment of interactive applications. Some of these tools, such as Streamlit or Shiny frameworks in languages such as Python or R, allow us to create from simple applications with friendly interfaces to complex tools. These interactive digital decision dashboards allow... C. Hernandez, A. Correndo, J. Lacasa, P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti