Proceedings
Authors
| Filter results20 paper(s) found. |
|---|
1. Spatial Variability Analyse And Correlation Between Physical Chemical Soil Attributes And Sugarcane Quality ParametersWith the high increment in the ethanol demand, the trend is that the planted area with sugar cane in Brazil will increase from the actual 7 million ha up to 12 million ha in 15 years. The sugar cane expansion demands, beyond the enlargement of the boundaries with the installation of new industrial units, better use of the production areas and improvement of the yield and quality, together with production costs reduction. In such a way, the adoption of Precision Agriculture... F. Rodrigues jr, P.S. Maglh, D.G. Cerri |
2. A Non-Destructive Method of Estimating Red Tip Disease in PineappleRed Tip disease typically reduces pineapple yields by up to 50%. At present, the causal agent of Red Tip disease is still unconfirmed. B... F. Abu kassim, G. Vadamalai, A. Mohd hanif, S.K. Balasundram |
3. Understanding Spatial and Temporal Variability of Wheat Yield: An Integrated System ApproachSpatial variation in soil water and nitrogen are often the causes of crop yield spatial variability due to their influence on the uniformity of plant stand at emergence and for in-season stresses. Natural and acquired variability in production capacity or potential within a field causes uniform agronomic management practices for the field to be correct in some parts and inappropriate in others. To achieve... B. Basso, C. Fiorentino, D. Cammarano, A. D'errico |
4. On-The-Go pH Sensor: An Evaluation in a Kentucky FieldA commercially available on-the-go soil pH sensor measures and maps subsurface soil pH at high spatial intensities across managed landscapes. The overall purpose of this project was to evaluate the potential for this sensor to be used in agricultural fields. The specific goals were to determine and evaluate 1) the accuracy with which this instrument can be calibrated, 2) the geospatial structure of soil pH measurements,... T. Mueller, E. Gianello, B. Mijatovic, E. Rienzi, M. Rodrigues |
5. Soil Organic Carbon Multivariate Predictions Based on Diffuse Spectral Reflectance: Impact of Soil MoistureSpatial predictions of soil organic carbon (OC) developed with proximal and remotely sensed diffuse reflectance spectra are complicated by field soil moisture variation. Our objective was to determine how moisture impacted spectral reflectance and Walkley-Black OC predictions. Soil reflectance from the North American Proficiency Testing... T. Mueller, C. Matocha, F. Sikora, B. Mijatovic, E. Rienzi |
6. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPTAgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy |
7. Identifying and Filtering Out Outliers in Spatial DatasetsOutliers present in the dataset is harmful to the information quality contained in the map and may lead to wrong interpretations, even if the number of outliers to the total data collected is small. Thus, before any analysis, it is extremely important to remove these errors. This work proposes a sequential process model capable of identifying outlier data when compared their neighbors using statistical parameters. First, limits are determined based on the median range of the values of all the... L. Maldaner, J. Molin, T. Tavares, L. Mendez, L. Corrêdo, C. Duarte |
8. Variability in Corn Yield Response to Nitrogen Fertilizer in QuebecOptimizing nitrogen (N) fertilization is important to improve corn yield and to reduce N losses to the environment. The economic optimum nitrogen rate (EONR) is variable and depends on many factors, including weather conditions and crop management. The main objective of this study was to examine how grain corn yield response to N varies with planting date, soil texture and spring weather across sites and years in Monteregie, which is the most important with 64% of total area and 69%... L. Kablan, V. Chabot, A. Mailloux, M. Bouchard, D. Fontaine, T. Bruulsema |
9. Monitoring Potassium Levels in Peat-Grown Pineapple Using Selected Spectral RatiosIn this study, we assessed the biophysical changes within pineapple (var. MD2) in response to different potassium (K) rates using a hyperspectral approach. K deficiency was detected at 171 days after planting. Shortage of K also exhibited a shift in red edge towards shorter wavelengths between 500-700 nm. In addition, spectral ranges of 430 nm and 680 nm, as well as 680-752 nm were found to be most effective in differentiating spectral response to varying K rates. Three vegetation indices, i.e.... S.K. Balasundram, Y. Chong, A. Mohd hanif |
10. Quantification of Seed Performance: Non-Invasive Determination of Internal Traits Using Computed TomographyThe application of the 3D mean-shift filter to 3D Computed Tomography Data enables the segmentation of internal traits. Specifically in maize seeds this approach gives the opportunity to separate the internal structure, for example the volume of the embryo, the cavities and the low and high dense parts of the starch body. To evaluate the mean-shift filter, the results were compared to the usage of a median-smoothing filter. To show the relevance of the mean-shift extended image pipeline an automatic... J. Claussen, N. Wörlein, N. Uhlmann, S. Gerth |
11. Shared Protocols and Data Template in Agronomic TrialsDue to the overlap of many disciplines and the availability of novel technologies, modern agriculture has become a wide, interdisciplinary endeavor, especially in Precision Agriculture. The adoption of a standard format for reporting field experiments can help researchers to focus on the data rather than on re-formatting and understanding the structure of the data. This paper describes how a European consortium plans to: i) create a “handbook” of protocols for reporting definitions,... D. Cammarano, D. Drexler, P. Hinsinger, P. Martre, X. Draye, A. Sessitsch, N. Pecchioni, J. Cooper, W. Helga, A. Voicu |
12. ADAPT: A Rosetta Stone for Agricultural DataModern farming requires increasing amounts of data exchange among hardware and software systems. Precision agriculture technologies were meant to enable growers to have information at their fingertips to keep accurate farm records (and calculate production costs), improve decision-making and promote efficiencies in crop management, enable greater traceability, and so forth. The attainment of these goals has been limited by the plethora of proprietary, incompatible data formats among... D.D. Danford, K.J. Nelson, S.T. Rhea, M.W. Stelford, R. Ferreyra, J.A. Wilson, B.E. Craker |
13. AgDataBox: Web Platform of Data Integration, Software, and Methodologies for Digital AgricultureAgriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. Digital agriculture enables the flow of information... E.G. Souza, C. Bazzi, A. Hachisuca, R. Sobjak, A. Gavioli, N. Betzek, K. Schenatto, E. Mercante, M. Rodrigues, W. Moreira |
14. Web Application for Automatic Creation of Thematic Maps and Management Zones - AgDataBox-Fast TrackAgriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture (DA) has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. DA enables information to flow from used agricultural... J. Aikes junior, E.G. Souza, C. Bazzi, R. Sobjak, A. Hachisuca, A. Gavioli, N. Betzek, K. Schenatto, W. Moreira, E. Mercante, M. Rodrigues |
15. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and IndianaPrecision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor |
16. Leveraging UAV-based Hyperspectral Data and Machine Learning Techniques for the Detection of Powderly Mildew in VineyardsThis paper presents the development and validation of machine learning models for the detection of powdery mildew in vineyards. The models are trained and validated using custom datasets obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The dataset consists of the images of vineyards with marked regions for powdery mildew, meticulously annotated using LabelImg. ... S. Bhandari, M. Acosta, C. Cordova gonzalez, A. Raheja, A. Sherafat |
17. Spatial Predictive Modeling to Quantify Soybean Seed Quality Using Remote Sensing and Machine LearningIn recent years, the advancement of artificial intelligence technologies combined with satellite technology is revolutionized agriculture through the development of algorithms that help producers become more sustainable. This could improve the conditions of farmers not only by maximizing their production and minimizing environmental impact but also due to better economic benefits by allowing them to access high-value-added markets. Furthermore, the use of predictive tools that could improve the... C. Hernandez, P. Kyveryga, A. Correndo, A. Prestholt, I. Ciampitti |
18. Fertigation Management Strategies Effect on Residual Nitrates in the Soil Profile and Ground WaterNitrogen is an input that is vital for growth and productivity within the corn belt states of the U.S. However, when nitrogen as an input into agricultural cropping systems is often over-applied and thus not optimally utilized by the cropping system. Therefore, it is at risk of loss within the environment through processes of leaching, denitrification, and volatilization. This is a major concern in Nebraska, as the reality is that much of the state’s groundwater has been contaminated with... K.J. Bathke, T. Cross, J.D. Luck |
19. Sensor Based Fertigation ManagementSensor-based fertigation management (SBFM) is a relatively new technology for directing nitrogen (N) decisions, specifically tailored for delivery of N via center pivot irrigation systems (fertigation). The development of SBFM began in 2018 at the University of Nebraska-Lincoln with the help of cooperating producers across the state. Over two dozen field sites provided testbeds for the development and evaluation of the technology. The key technique in this fertigation approach is the... J. Stansell, J.D. Luck, T. Cross, K.J. Bathke, T. Smith |
20. From Scientific Literature to the End User: Democratizing Access to Data Products Through Interactive ApplicationsIn recent years, the sustained advance in the creation of powerful programming libraries is allowing not only the creation of complex models with predictive capabilities but also revolutionizing visualization processes and the deployment of interactive applications. Some of these tools, such as Streamlit or Shiny frameworks in languages such as Python or R, allow us to create from simple applications with friendly interfaces to complex tools. These interactive digital decision dashboards allow... C. Hernandez, A. Correndo, J. Lacasa, P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti |