Proceedings

Find matching any: Reset
Kolln, O.T
Saraswat, D
Add filter to result:
Authors
Graziano Magalhães, P.S
Sanches, G.M
Kolln, O.T
Franco, H.C
Braunbeck, O.A
Driemeier, C
Jha, S
Saraswat, D
Ward, M.D
Ahmad, A
Aggarwal, V
Saraswat, D
El Gamal, A
Johal, G
Topics
Spatial Variability in Crop, Soil and Natural Resources
Big Data, Data Mining and Deep Learning
Applications of Unmanned Aerial Systems
Type
Oral
Year
2014
2018
2022
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Precision Agriculture In Sugarcane Production. A Key Tool To Understand Its Variability.

Precision agriculture (PA) for sugarcane represents an important tool to manage local application of fertilizers, mainly because sugarcane is third in fertilizer consumption among Brazilian crops, after soybean and corn. Among the limiting factors detected for PA adoption in the sugarcane industry, one could mention the cropping system complexity, data handling costs, and lack of appropriate decision support systems. The objective of our research group has... P.S. Graziano magalhães, G.M. Sanches, O.T. Kolln, H.C. Franco, O.A. Braunbeck, C. Driemeier

2. Analyzing Trends for Agricultural Decision Support System Using Twitter Data

The trends and reactions of the general public towards global events can be analyzed using data from social platforms, including Twitter. The number of tweets has been reported to help detect variations in communication traffic within subsets like countries, age groups and industries. Similarly, publicly accessible data and (in particular) data from social media about agricultural issues provide a great opportunity for obtaining instantaneous snapshots of farmers’ opinions and a method to... S. Jha, D. Saraswat, M.D. Ward

3. Deep Learning-Based Corn Disease Tracking Using RTK Geolocated UAS Imagery

Deep learning-based solutions for precision agriculture have achieved promising results in recent times. Deep learning has been used to accurately classify different disease types and disease severity estimation as an initial stage for developing robust disease management systems. However, tracking the spread of diseases, identifying disease hot spots within cornfields, and notifying farmers using deep learning and UAS imagery remains a critical research gap. Therefore, in this study, high resolution,... A. Ahmad, V. Aggarwal, D. Saraswat, A. El gamal, G. Johal