Proceedings

Find matching any: Reset
Mueller, D
Mangus, D.L
Magalhaes, P.S
Meeks, C
Negreiros, M
Qiao, S
Nederend, J
Myers, D.B
Ma, Y
Negrini, R.P
McGraw, T
Nadav, I
Moretti, B
Morales, G
Mirzakhaninafchi, H
Meon, S
Nieman, S.T
Mulla, D
Mzuku, M
Moclán, C
Nakazawa, P.H
Nerpel, D
Mathew, J
Murdoch, A.J
Mekonnen, Y
Add filter to result:
Authors
Liaghat, S
Mansor, S
Shafri, H
Meon, S
Ehsani, R
Azam, S
Noh, N
Yang, X
Sun, C
Qian, J
Ji, Z
Qiao, S
Chen, M
Zhao, C
Li, M
Kremer, R.J
Kitchen, N.R
Sudduth, K.A
Myers, D.B
Mzuku, M
Khosla, R
Reich, R
http://icons.paqinteractive.com/16x16/ac, G
Smith, F
MacDonald, L
Stombaugh, T
Zandonadi, R.S
Luck, J.D
McDonald, T.P
McGraw, T
Murdoch, A.J
Mahmood, S.A
Myers, D.B
Kitchen, N.R
Sudduth, K.A
Leonard, B.J
Mangus, D.L
Sharda, A
Song, X
Yang, G
Ma, Y
Wang, R
Yang, C
Hama Rash, S
Murdoch, A.J
Souza, W.J
Akune, V.S
Benez, S.H
Citon, L.C
Nakazawa, P.H
Santana Neto, A.J
Souza, W.J
Benez, S.H
Nakazawa, P.H
Santana Neto, A.J
Citon, L.C
Akune, V.S
Nerpel, D
Ellsworth, J.W
Hunt, A
Sanches, G.M
Kolln, O.T
Franco, H.C
Magalhaes, P.S
Duft, D.G
Sanches, G.M
Amaral, L.R
Pitrat, T
Brasco, T
Magalhaes, P.S
Duft, D.G
Franco, H.C
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Morris, T
Tremblay, N
Kyveryga, P.M
Clay, D.E
Murrell, S
Ciampitti, I
Thompson, L
Mueller, D
Seger, J
Casanova, J.L
Fraile, S
Romo, A
Sanz, J
Moclán, C
Galzki, J
Nelson, J
Mulla, D
Nadav, I
Kumar, S
Singh, M
Mirzakhaninafchi, H
Modi, R.U
Ali, M
Bhardwaj, M
Soni, R
Cordero, E
Sacco, D
Moretti, B
Miniotti, E.F
Tenni, D
Beltarre, G
Romani, M
Grignani, C
Nederend, J
Drover, D
Reiche, B
Deen, B
Lee, L
Taylor, G.W
de Souza, M.R
Bertani, T.D
Parraga, A
Bredemeier, C
Trentin, C
Doering, D
Susin, A
Negreiros, M
Vories, E
Jones, A
Stevens, G
Meeks, C
Burton, L
Jayachandran, K
Bhansali, S
Mekonnen, Y
Sarwat, A
Goldwasser, Y
Alchanati, V
Goldshtein, E
Cohen, Y
Gips, A
Nadav, I
Morales, G
Sheppard, J.W
Peerlinck, A
Hegedus, P
Maxwell, B
Das, A
Flores, P
Zhang , Z
Friskop, A
Mathew, J
Negrini, R.P
Miao, Y
Mizuta, K
Stueve, K
Kaiser, D
Coulter, J.A
Mizuta, K
Miao, Y
Lu, J
Negrini, R.P
Pereira de Souza, F
Negrini, R.P
tao, H
Topics
Precision Horticulture
Precision Crop Protection
Proximal Sensing in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Engineering Technologies and Advances
Spatial Variability in Crop, Soil and Natural Resources
Remote Sensing Applications in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Decision Support Systems in Precision Agriculture
Standards & Data Stewardship
Big Data Mining & Statistical Issues in Precision Agriculture
Proximal Sensing in Precision Agriculture
Remote Sensing Application / Sensor Technology
Drainage Optimization and Variable Rate Irrigation
Small Holders and Precision Agriculture
In-Season Nitrogen Management
Applications of Unmanned Aerial Systems
On Farm Experimentation with Site-Specific Technologies
Education and Outreach in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Big Data, Data Mining and Deep Learning
Applications of Unmanned Aerial Systems
Site-Specific Nutrient, Lime and Seed Management
On Farm Experimentation with Site-Specific Technologies
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results32 paper(s) found.

1. Spatial Variability Of Measured Soil Properties Across Site- Specific Management Zones

The spatial variation of productivity across farm fields can be classified by delineating site-specific management zones. Since productivity is influenced by soil characteristics, the spatial pattern of productivity could be caused by a corresponding variation in certain soil properties. Determining the source of variation in productivity can help achieve more effective site-specific management, the objectives of this study were (i) to characterize the spatial variability of soil physical properties... M. Mzuku, R. Khosla, R. Reich, G. Http://icons.paqinteractive.com/16x16/ac, F. Smith, L. Macdonald

2. Tools For Evaluating The Potential Of Automatic Section Control

One of the newest technologies in precision agriculture is automatic section control on application equipment. This technology has tremendous potential to reduce wasted inputs, especially on irregularly shaped fields. Paybacks are not necessarily as great on rectangular fields. Producers considering adoption of the technology need to decide whether they will receive sufficient payback for their field shapes. They must also decide... T. Stombaugh, R.S. Zandonadi, J.D. Luck, T.P. Mcdonald, T. Mcgraw

3. Early Detection of Oil Palm Fungal Disease Infestation Using A Mid-Infrared Spectroscopy Technique

Basal stem rot (BSR) caused by Ganoderma boninense is known as the most destructive disease of oil palm plantations in Southeast Asia. Ganoderma could potentially reduce the market share of palm oil for Malaysia. Currently Malaysia produces about 50% of the world’s supply of palm oil. Early, accurate, and non-destructive diagnosis of Ganoderma fungal infection is critical for management of this disease. Early disease management of Ganoderma could also prevent great losses in production and... S. Liaghat, S. Mansor, H. Shafri, S. Meon, R. Ehsani, S. Azam, N. Noh

4. Modeling and Decision Support System for Precision Cucumber Protection in Greenhouses

The plant disease... X. Yang, C. Sun, J. Qian, Z. Ji, S. Qiao, M. Chen, C. Zhao, M. Li

5. Estimating Soil Quality Indicators with Diffuse Reflectance Spectroscopy

Knowledge of within-field spatial variability in soil quality indicators is important to assess the impact of site-specific management on the soil. Standard methods for measuring these properties require considerable time and expense, so sensor-based approaches would be... R.J. Kremer, N.R. Kitchen, K.A. Sudduth, D.B. Myers

6. Toward More Precise Sugar Beet Management Based On Geostatistical Analysis Of Spatial Variabilty Within Fields

Abstract: Sugar beet (Beta vulgaris L.) yields in England are predicted to increase in the future, due to the advances in plant breeding and agronomic progress, but the intra-field variations in yield due to the variability in soil properties is considerable. This paper explores the within-field spatial variation in environmental variables and crop development during the growing season and their link to spatial variation in sugar beet yield.... A.J. Murdoch, S.A. Mahmood

7. Physiological Repsonses Of Corn To Variable Seeding Rates In Landscape-Scale Strip Trials

Many producers now have the capability to vary seeding rates on-the-go. Methods are needed to develop variable rate seeding approaches in corn but require an understanding of the physiological response of corn to soil-landscape and weather conditions. Interplant competition fundamentally differs at varied seeding rate and may affect corn leaf area, transpiration, plant morphology, and assimilate partitioning. Optimizing these physiological effects with optimal seeding rates in a site-specific... D.B. Myers, N.R. Kitchen, K.A. Sudduth, B.J. Leonard

8. Selection and Utility of Uncooled Thermal Cameras for Spatial Crop Temperature Measurement Within Precision Agriculture

Since previous research used local, single-point measurements to indicate crop water stress, thermography is presented as a technique capable of measuring spatial temperatures supporting its use for monitoring crop water stress. This study investigated measurement accuracy of uncooled thermal cameras under strict environmental conditions, developed hardware and software to implement uncooled thermal cameras and quantified intrinsic properties that impact measurement accuracy and repeatability.... D.L. Mangus, A. Sharda

9. Spatial and Temporal Variation of Soil Nitrogen Within Winter Wheat Growth Season

This study aims to explore the spatial and temporal variation characteristics of soil ammonium nitrogen and nitrate nitrogen within winter wheat growth season. A nitrogen-rich strip fertilizer experiment with eight different treatments was conducted in 2014. Soil nitrogen samples of 20-30cm depth near wheat root were collected by in-situ Macro Rhizon soil solution collector then soil ammonium nitrogen and nitrate nitrogen content determined by SEAL AutoAnalyzer3 instrument. Classical statistics... X. Song, G. Yang, Y. Ma, R. Wang, C. Yang

10. Consequences of Spatial Variability in the Field on the Uniformity of Seed Quality in Barley Seed Crops

Spatial variation is known to affect cereal growth and yield but consequences for seed quality are less well-known. Intra-field spatial variation occurs in soil and environmental variables and these are expected to affect the crop. The objective of this paper was to identify the spatial variation in barley seed quality and to investigate its association with environmental factors and the spatial scale over which this correlation occurs. Two uniformly-managed, commercial fields of winter... S. Hama rash, A.J. Murdoch

11. Agronomic Characteristics of Green Corn and Correlations with Productivity for the Establishment of Management Zones in Vale Do Ribeira, SP, Brazil

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, V.S. Akune, S.H. Benez, L.C. Citon, P.H. Nakazawa, A.J. Santana neto

12. Spatial Variability and Correlations Between Soil Attributes and Productivity of Green Corn Crop

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, S.H. Benez, P.H. Nakazawa, A.J. Santana neto, L.C. Citon, V.S. Akune

13. Modus: a Standard for Big Data

Modus Standard is a system of defined terminology, agreed metadata and file transfer format that has grown from a need to exchange, merge and trend agricultural testing data. The three presenters will discuss steps taken to develop the system, benefits to data exchange, current user base and additions being made to the standard. ... D. Nerpel, J.W. Ellsworth, A. Hunt

14. Translating Data into Knowledge - Precision Agriculture Database in a Sugarcane Production.

The advent of Information Technology in agriculture, surveying and data collection became a simple task, starting the era of "Big Data" in agricultural production. Currently, a large volume of data and information associated with the plant, soil and climate are collected quick and easily. These factors influence productivity, operating costs, investments and environment impacts. However, a major challenge for this area is the transformation of data and information... G.M. Sanches, O.T. Kolln, H.C. Franco, P.S. Magalhaes, D.G. Duft

15. Apparent Electrical Conductivity Sensors and Their Relationship with Soil Properties in Sugarcane Fields

One important tool within the technological precision agriculture (PA) package are the apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-making... G.M. Sanches, L.R. Amaral, T. Pitrat, T. Brasco, P.S. Magalhaes, D.G. Duft, H.C. Franco

16. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

17. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

18. Precision Farming by Means of Remote Sensing.

In order to improve the wine quality a study has been carried out on a vineyard. From two different types of satellite images, 5 products have been obtained and represented in maps. DMC-UK images, with a resolution of 32 meters and QUICK-BIRD images, with a resolution of 0.6 meters have been used. Through the bands of these images, the following products were obtained: the NDVI, with which users find out which zones in their estates have the worst condition; Mean Vegetation State, which is a comparative... J.L. Casanova, S. Fraile, A. Romo, J. Sanz, C. Moclán

19. Identifying Critical Landscape Areas for Precision Conservation in the Minnesota River Basin

The Minnesota River Basin generates a disproportionately high amount of total suspended sediments to the Upper Mississippi River Basin. Many reaches in the Minnesota River Basin have impaired water quality due to turbidity. Critical landscapes can be divided into depressional areas, riparian areas, highly erodible lands, and areas susceptible to ephemeral gullies or ravines. Geographic Information Systems (GIS) were utilized, and terrain analysis was conducted using digital elevation models in... J. Galzki, J. Nelson, D. Mulla

20. Elimination of Spatial Variability Using Variable Rate Drip Irrigation (VRDI) in Vineyards

Vineyards worldwide are subjected to spatial variability, which can be exhibited in both low and high yield areas meaning that the vineyard is not achieving his full yield potential. In addition, the grapes quality is not uniformed leading to different wine qualities from the same plot. The assumption is that a variability in available water for the plant due to soil variability leads to the observed yield variability. A variable rate drip irrigation (VRDI) concept was developed to reduce such... I. Nadav

21. Practical and Affordable Technologies for Precision Agriculture in Small Fields: Present Status and Scope in India

The objective of this review paper is to find out practical and affordable precision agriculture(PA) technologies present status and scope in India that are suitable for small fields. The judicious use of inputs like water, fertilizers, herbicides, pesticides and better management of farm equipments will increase the net profit for farmers. The important components of PA in India which are being used for small lands are Geographic Information System(GIS), laser land leveler, leaf color chart,... S. Kumar, M. Singh, H. Mirzakhaninafchi, R.U. Modi, M. Ali, M. Bhardwaj, R. Soni

22. Deriving Fertiliser VRA Calibration Based on Ground Sensing Data from Specific Field Experiments

Nitrogen (N) fertilisation affects both rice yield and quality. In order to improve grain yield while limiting N losses, providing N fertilisers during the critical growth stages is essential. NDRE is considered a reliable crop N status indicator, suitable to drive topdressing N fertilisation in rice. A multi-year experiment on different rice varieties (Gladio, Centauro, and Carnaroli) was conducted between 2011 and 2017 in Castello d’Agogna (PV), northwest Italy, with the aim of i) establishing... E. Cordero, D. Sacco, B. Moretti, E.F. Miniotti, D. Tenni, G. Beltarre, M. Romani, C. Grignani

23. The Guelph Plot Analyzer: Semi-Automatic Extraction of Small-Plot Research Data from Aerial Imagery

Small-plot trials are the foundation of open-field agricultural research because they strike a balance between the control of an artificial environment and the realism of field-scale production. However, the size and scope of this research field is often limited by the ability to collect data, which is limited by access to labour. Remote sensing has long been investigated to allocate labour more efficiently, therefore enabling the rapid collection of data. Imagery collected by unmanned aerial... J. Nederend, D. Drover, B. Reiche, B. Deen, L. Lee, G.W. Taylor

24. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural Network

In this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros

25. Variety Effects on Cotton Yield Monitor Calibration

While modern grain yield monitors are able to harvest variety and hybrid trials without imposing bias, cotton yield monitors are affected by varietal properties. With planters capable of site-specific planting of multiple varieties, it is essential to better understand cotton yield monitor calibration. Large-plot field experiments were conducted with two southeast Missouri cotton producers to compare yield monitor-estimated weights and observed weights in replicated variety trials. Two replications... E. Vories, A. Jones, G. Stevens, C. Meeks

26. Exploring Wireless Sensor Network Technology in Sustainable Okra Garden: A Comparative Analysis of Okra Grown in Different Fertilizer Treatments

The goal of this project was to explore commercial agricultural and irrigation sensor kits and to discern if the commercial wireless sensor network (WSN) is a viable tool for providing accurate real-time farm data at the nexus of food energy and water. The smart garden consists of two different varieties of Abelmoschus esculentus (okra) planted in raised beds, each grown under two different fertilizer treatments. Soil watermark sensors were programed to evaluate soil moisture and dictate irrigation... L. Burton, K. Jayachandran, S. Bhansali, Y. Mekonnen, A. Sarwat

27. The Use of Spatial and Temporal Measures to Enhance the Sensitivity of Satellite-based Spectral Vegetation Indices to (Water) Stress in Maize Fields

Climate change and water scarcity are reducing the available irrigation water for agriculture thus turning it into a limited resource. Today calculating and estimating crop water requirements are achieved through the ETc FAO-56 model where the effect of climate on crop water requirement is determined through the water evaporation from the soil and plant (ETref), and a calendar crop coefficient (Kc). Models that... Y. Goldwasser, V. Alchanati, E. Goldshtein, Y. Cohen, A. Gips, I. Nadav

28. Generation of Site-specific Nitrogen Response Curves for Winter Wheat Using Deep Learning

Nitrogen response (N-response) curves are tools used to support farm management decisions. Conventionally, the N-response curve is modeled as an exponential function that aims to identify an important threshold for a given field: the economic optimum point. This is useful to determine the nitrogen rate beyond which there is no actual profit for the farmers. In this work, we show that N-response curves are not only field-specific but also site-specific and, as such, economic optimum points should... G. Morales, J.W. Sheppard, A. Peerlinck, P. Hegedus, B. Maxwell

29. Assessment of Goss Wilt Disease Severity Using Machine Learning Techniques Coupled with UAV Imagery

Goss Wilt has become a common disease in corn fields in North Dakota.  It has been one of the most yield-limiting diseases, causing losses of up to 50%. The current method to identify the disease is through visual inspection of the field, which is inefficient, and can be subjective, with misleading results, due to evaluator fatigue. Therefore, developing a reliable, accurate, and automated tool for assessing the severity of Goss's Wilt disease has become a top priority. The use of unmanned... A. Das, P. Flores, Z. Zhang , A. Friskop, J. Mathew

30. Within-field Spatial Variability in Optimal Sulfur Rates for Corn in Minnesota: Implications for Precision Sulfur Management

The ongoing decline in sulfur (S) atmospheric depositions and high yield crop production have resulted in S deficiency and the need for S fertilizer applications in corn cropping systems. Many farmers are applying S fertilizers uniformly across their fields. Little has been reported on the within-field spatial variability in optimal S rates and the potential benefits of variable rate S applications. The objectives of this study were to 1) assess within-field variability of optimal S rates (OSR),... R.P. Negrini, Y. Miao, K. Mizuta, K. Stueve, D. Kaiser, J.A. Coulter

31. Evaluating Different Strategies to Analyze On-farm Precision Nitrogen Trial Data

On-farm trials are being conducted by more and more researchers and farmers. On-farm trials are very different to traditional small plot experiments due to the existence of significant within-field variability in soil-landscape conditions. Traditional statistical techniques like analysis of variance (ANOVA) are commonly adopted for on-farm trial analysis to evaluate overall performance of different treatments, assuming uniform environmental and management factors within a field. As a result, the... K. Mizuta, Y. Miao, J. Lu, R.P. Negrini

32. Optimizing Chloride (Cl) Application for Enhanced Agricultural Yield

The optimization of chloride (Cl-) application rates is crucial for enhancing crop yields and reducing environmental impact in agricultural systems. This study investigates the relationship between chloride application rates and wheat yields, focusing on Club wheat cultivation in a 19.76-hectare field in Washington State. The target yield was set at 3765 kilograms per hectare, with seeding conducted at 67.24 kilograms per hectare using conservation tillage practices. Potassium chloride... F. Pereira de souza, R.P. Negrini, H. Tao