Proceedings

Find matching any: Reset
Maimaitijiang, M
Ma, K
Christensen, A
Add filter to result:
Authors
de Solan, B
Lopez Lozano, R
Ma, K
Baret, F
Tisseyre, B
Rai, N
Zhang, Y
Quanbeck, J
Christensen, A
Sun, X
Kovacs, P
Maimaitijiang, M
Millett, B
Dorissant, L
Acharya, I
Janjua, U.U
Dilmurat, K
Topics
Pros and Cons of Reflectance and Fluorescence-based Remote Sensing of Crop
Big Data, Data Mining and Deep Learning
Big Data, Data Mining and Deep Learning
Type
Oral
Poster
Year
2010
2022
2024
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Interest Of 3D Modeling For Lai Retrieval From Canopy Transmittance Measurements: The Cases Of Wheat And Vineyard

Remote sensing techniques are now widely used in agriculture, for cultivar screening as well as for decision making tools. Empirical methods relate directly the remote sensing measured values to crop characteristics. These methods are limited by the important amount of ground data necessary for their calibration. Their validity domain is generally not very well defined as well as the associated uncertainties. Conversely, radiative transfer models allow simulating a wide range of conditions, and... B. De solan, R. Lopez lozano, K. Ma, F. Baret, B. Tisseyre

2. Spotweeds: a Multiclass UASs Acquired Weed Image Dataset to Facilitate Site-specific Aerial Spraying Application Using Deep Learning

Unmanned aerial systems (UASs)-based spot spraying application is considered a boon in Precision Agriculture (PA). Because of spot spraying, the amount of herbicide usage has reduced significantly resulting in less water contamination or crop plant injury. In the last demi-decade, Deep Learning (DL) has displayed tremendous potential to accomplish the task of identifying weeds for spot spraying application. Also, most of the ground-based weed management technologies have relied on DL techniques... N. Rai, Y. Zhang, J. Quanbeck, A. Christensen, X. Sun

3. Simultaneously Estimating Crop Biomass and Nutrient Parameters Using UAS Remote Sensing and Multitask Learning

Rapid and accurate estimation of crop growth status and nutrient levels such as aboveground biomass, nitrogen, phosphorus, and potassium concentrations and uptake is critical with respect to precision agriculture and field-based crop monitoring. Recent developments in Uncrewed Aircraft Systems (UAS) and sensor technologies have enabled the collection of high spatial, spectral, and temporal remote sensing data over large areas at a lower cost. Coupled deep learning-based modeling approaches with... P. Kovacs, M. Maimaitijiang, B. Millett, L. Dorissant, I. Acharya, U.U. Janjua, K. Dilmurat