Proceedings

Find matching any: Reset
McNairn, H
Mahjoub, O.A
Wilde, P
Waine, D
Freitas, A.A
Nielsen, M.B
Nielsen, R.L
Nafziger, E
Willis, L.A
Miller, C
Wardle, E
Marshall, J
Morley, T.G
Morier, T
Werner, R
Wever, H
Mahmood, S
Nielsen, D.C
M. Rabello, L
Marra, M.C
Fox, C.W
Michelon, G.K
Folle, S
Finegan, M
Wilhelm, N
Moulin, A
Nef, B.K
Walsh, O
Add filter to result:
Authors
Kormann, G
Mueller, S
Werner, R
Cambouris, A
Chokmani, K
Morier, T
Bortolon, L
Borghi, E
Luchiari Junior, A
Bortolon, E.S
Freitas, A.A
Inamasu, R.Y
Avanzi, J.C
M. Rabello, L
R. D. Pereira, R
C. Lopes, W
Y. Inamasu, R
V. de Sousa, R
Mahjoub, O.A
Modaihsh, A.S
Velandia, M
Mooney, D.F
Roberts, R.K
English, B.C
Larson, J.A
Lambert, D.M
Larkin, S.L
Marra, M.C
Rejesus, R
Martin, S.W
Paxton, K.W
Mishra, A
Wang, C
Segarra, E
Reeves, J.M
Casiano, P.M
Morley, T.G
Sadeque, Z
Moulin, A
Moulin, A
Khakbazan, M
Whattoff, D
Mouazen, D
Waine, D
Walsh, O.S
Belmont, K
McClintick-Chess, J
Marshall, J
Jackson, C
Thompson, C
Swoboda, K
Yule, I.J
Grafton, M.C
Willis, L.A
McVeagh, P.J
Lilienthal, H
Wilde, P
Schnug, E
Jones, B
McBeath, T
Wilhelm, N
Ransom, C.J
Bean, M
Kitchen, N
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Franzen, D.W
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Ahuja, L.R
Saseendran, S.A
Ma, L
Nielsen, D.C
Trout, T.J
Andales, A.A
Hansen, N.C
Binch, A
Cooke, N
Fox, C.W
Moulin, A
Khakbazan, M
Khakbazan, M
Moulin, A
Huang, J
Michiels, P
Xie, R
Bazzi, C.L
Jasse, E.P
Souza, E.G
Magalhães, P.S
Michelon, G.K
Schenatto, K
Gavioli, A
Michelon, G.K
Sanches, G.M
Valente, I.Q
Bazzi, C.L
de Menezes, P.L
Amaral, L.R
Magalhaes, P.G
Kitchen, N.R
Yost, M.A
Ransom, C.J
Bean, G
Camberato, J
Carter, P
Ferguson, R
Fernandez, F
Franzen, D
Laboski, C
Nafziger, E
Sawyer, J
Kross, A
Kaur, G
Callegari, D
Lapen, D
Sunohara, M
McNairn, H
Rudy, H
van Vliet, L
Finegan, M
Wallace, D
Kross, A
Kaur, G
Znoj, E
Callegari, D
Sunohara, M
McNairn, H
Lapen, D
Rudy, H
van Vliet, L
Boatswain Jacques, A.A
Adamchuk, V.I
Cloutier, G
Clark, J.J
Miller, C
Rydahl, P
Boejer, O
Jensen, N
Hartmann, B
Jorgensen, R
Soerensen, M
Andersen, P
Paz, L
Nielsen, M.B
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Karampoiki, M
Todman, L
Mahmood, S
Murdoch, A
Paraforos, D
Hammond, J
Ranieri, E
Samborski, S.M
Szatylowicz, J
Gnatowski, T
Leszczyńska, R
Thornton, M
Walsh, O
Michels, M
Bonke, V
Wever, H
Mußhoff, O
Miao, Y
Kechchour, A
Folle, S
Mizuta, K
Brown, A.J
Deleon, E
Wardle, E
Kumari, S
Rathore, J
Mitra, S
Gardezi, M
Walsh, O
Gardezi, M
Walsh, O
Joshi, D
Kumari, S
Clay, D.E
Rathore, J
Topics
Guidance, Robotics, Automation, and GPS Systems
Proximal Sensing in Precision Agriculture
Profitability, Sustainability and Adoption
Engineering Technologies and Advances
Precision Conservation and Carbon Management
Profitability, Sustainability, and Adoption
Engineering Technologies and Advances
Spatial Variability in Crop, Soil and Natural Resources
Spatial Variability in Crop, Soil and Natural Resources
Proximal Sensing in Precision Agriculture
Precision Nutrient Management
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Standards & Data Stewardship
Modelling and Geo-Statistics
Applications of Unmanned Aerial Systems
Site-Specific Nutrient, Lime and Seed Management
Profitability and Success Stories in Precision Agriculture
Big Data, Data Mining and Deep Learning
Decision Support Systems
In-Season Nitrogen Management
Education and Outreach in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Robotics, Guidance and Automation
Precision Crop Protection
In-Season Nitrogen Management
Big Data, Data Mining and Deep Learning
On Farm Experimentation with Site-Specific Technologies
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Site-Specific Nutrient, Lime and Seed Management
Wireless Sensor Networks and Farm Connectivity
Artificial Intelligence (AI) in Agriculture
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results36 paper(s) found.

1. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 Survey

The objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves

2. Path Tracking Control of Tractors and Steerable Towed Implements Based On Kinematic and Dynamic Modeling

recise path tracking control of tractors became the enabling technology for automation of field work in recent years. More and more sophisticated control systems for tractors however revealed that exact positioning of the actual implement is equally or even more important. Especially sloped and curved terrain, strip till fields, buried drip irrigation tapes and high-value crop... G. Kormann, S. Mueller, R. Werner

3. Temporal N Status Evaluation Using Hyperspectral Vegetation Indices in a Potato Crop

The amount and timing of nitrogen (N) fertilization represents a leading issue in precision agriculture, especially for potato (Solanum tuberosum L.) crop since N is an essential element for plant growth and tuber yield. Therefore, the ability to assess in-season crop N status from non-destructive methods such as proximal sensing is a promising alternative to optimize N fertilization... A. Cambouris, K. Chokmani, T. Morier

4. Adoption and Tendencies of Precision Agriculture Technologies in the Tocantins State, Brazil

Although precision agriculture is widely used throughout Brazilian crop production, it has not been used to increase the efficiency use of agricultural inputs. Besides, technologies available have not been... L. Bortolon, E. Borghi, A. Luchiari junior, E.S. Bortolon, A.A. Freitas, R.Y. Inamasu, J.C. Avanzi

5. Implementation of a Controller Unit Based on the ISO 11783 Standard for Automatic Measurement of the Electrical Conductivity of the Soil

... L. M. rabello, R. R. d. pereira, W. C. lopes, R. Y. inamasu, R. V. de sousa

6. Soil Salinity, Sand Encroachment and Erosion as Indicators of Land Degradation in Harad Center, Saudi Arabia

This study presents the main results of a thorough evaluation of land degradation in Saudi Arabia (Harad Centre). The study was carried out in 2006-2007 as part of a project aimed to study features and causes of land degradation in Saudi Arabia. The study area occupies... O.A. Mahjoub, A.S. Modaihsh

7. GNSS Positioning Techniques For Agriculture

Broadacre, row crop and high value crops each have different positioning needs.  Within these agricultural groups, individual practices such as mapping, guidance and machine control for tillage, application and harvest each have their own Global Navigation Satellite Systems (GNSS) needs for an optimal price/performance and value equation.  New research and algorithm development by NovAtel has resulted in a significant simplification of positioning methodology with increased... P.M. Casiano, T.G. Morley, Z. Sadeque

8. Probability Distributions And Alternative Transformations Of Soil Test NO3-N And PO4-P, Implications For Precision Agriculture

Recommendations for fertilizer N in crop production and precision agriculture depend on statistical analyses of data which represent soil NO3-N and PO4-P fertility typical of management zones and fields.  Non-normal distributions of soil test N are commonly log transformed prior to statistical analysis for interpolation with methods such as kriging, regression, or principle component analysis.  These data are transformed to ensure that analysis meet the assumptions of normality... A. Moulin

9. Statistical Variability of Crop Yield, Soil Test N and P Within and Between Producer’s Fields

Soil test N and P significantly affect crop production in the Canadian Prairies, but vary considerably within and between producer's fields.  This study describes the variability of crop yield, soil test N and P within and between producer's fields in the context of variable fertilizer rates.  Yield, terrain attribute, soil test N and P data were collected for 10 fields in Alberta, Saskatchewan and Manitoba Canada in 2014 and 2015.  The influence of fertilizer... A. Moulin, M. Khakbazan

10. A Multi Sensor Data Fusion Approach for Creating Variable Depth Tillage Zones.

Efficiency of tillage depends largely on the nature of the field, soil type, spatial distribution of soil properties and the correct setting of the tillage implement.  However, current tillage practice is often implemented without full understanding of machine design and capability leading to lowered efficiency and further potential damage to the soil structure. By modifying the physical properties of soil only where the tillage is needed for optimum crop growth, variable depth tillage (VDT)... D. Whattoff, D. Mouazen, D. Waine

11. UAV-based Crop Scouting for Precision Nutrient Management

Precision agriculture – is one of the most substantial markets for the Unmanned Aerial Vehicles (UAVs). Mounted on the UAVs, sensors and cameras enable rapid screening of large numbers of experimental plots to identify crop growth habits that contribute to final yield and quality in a variety of environments. Wheat is one of the Idaho’s most important cereal crops grown in 42 of 44 Idaho counties. We are working on establishing a UAV-based methodology for in-season prediction of wheat... O.S. Walsh, K. Belmont, J. Mcclintick-chess, J. Marshall, C. Jackson, C. Thompson, K. Swoboda

12. Measuring Pasture Mass and Quality Indices Over Time Using Proximal and Remote Sensors

Traditionally pasture has been measured or evaluated in terms of a dry matter yield estimate, which has no reference to other important quality factors. The work in this paper measures pasture growth rates on different slopes and aspects and pasture quality through nitrogen N% and metabolizable energy and ME concentration. It is known that permanent pasture species vary greatly in terms of quality and nutritional value through different stages of maturity. Pasture quality decreases as grass tillers... I.J. Yule, M.C. Grafton, L.A. Willis, P.J. Mcveagh

13. Proximal Hyperspectral Sensing in Plant Breeding

The use of remote sensing in plant breeding is challenging due to the large number of small parcels which at least actually cannot be measured with conventional techniques like air- or spaceborne sensors. On the one hand crop monitoring needs to be performed frequently, which demands reliable data availability. On the other hand hyperspectral remote sensing offers new methods for the detection of vegetation parameters in crop production, especially since methods for safe and efficient detection... H. Lilienthal, P. Wilde, E. Schnug

14. Shifting Fertiliser Response Zones in a Four Year, Whole-paddock Cereal Cropping Experiment.

Precision agriculture in cropping areas of dryland Australia has focused on managing within production zones. These are ideally stable, possibly soil- and topography-based areas within fields. There are many different ideas on how to delimit and implement zones, and a four year whole-field experiment, with low, medium and high treatment philosophies applied per 9m seeder/harvester width across the entire field, was established to explore how zones might best be established and used. The treatment... B. Jones, T. Mcbeath, N. Wilhelm

15. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

16. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

17. Use of a Cropping System Model for Soil-specific Optimization of Limited Water

In the arena of modern agriculture, system models capable of simulating the complex interactions of all the relevant processes in the soil-water-plant- atmosphere continuum are widely accepted as potential tools for decision support to optimize crop inputs of water to achieve location specific yield potential while minimizing environmental (soil and water resources) impacts. In a recent study, we calibrated, validated, and applied the CERES-Maize v4.0 model for simulating limited-water irrigation... L.R. Ahuja, S.A. Saseendran, L. Ma, D.C. Nielsen, T.J. Trout, A.A. Andales, N.C. Hansen

18. Rumex and Urtica Detection in Grassland by UAV

Previous work (Binch & Fox, 2017) used autonomous ground robotic platforms to successfully detect Urtica (nettle) and Rumex (dock) weeds in grassland, to improve farm productivity and the environment through precision herbicide spraying. It assumed that ground robots swathe entire fields to both detect and spray weeds, but this is a slow process as the slow ground platform must drive over every square meter of the field even where there are no weeds. The present study examines a complimentary... A. Binch, N. Cooke, C.W. Fox

19. Spatial Variability of Canola Yield Related to Terrain Attributes Within Producer's Fields

Canola production in the Canadian Prairies varies considerably within and between producer's fields.  This study describes the variability of crop yield in producer's fields in the context of terrain attributes, and in relation to fertilizer rates in management zones determined from historical yield.  Canola yield data were collected for 27 fields in Alberta, Saskatchewan and Manitoba Canada in 2014, 2015, 2016 and 2017.  Several terrain attributes accounted for a considerable... A. Moulin, M. Khakbazan

20. Evaluation of the Potential for Precision Agriculture and Soil Conservation at Farm and Watershed Scale: A Case Study

Precision agriculture and soil conservation have the potential to increase crop yield and economic return while reducing environmental impacts. Landform, spatial variability of soil processes, and temporal trends may affect crop N response and should be considered for precision agriculture. The objective of this research was to evaluate the viability of precision agriculture in improving N use efficiency and profitability at the farm and watershed level in western Canada. Two studies are described... M. Khakbazan, A. Moulin, J. Huang, P. Michiels, R. Xie

21. AgDataBox – API (Application Programming Interface)

E-agricultural is an emerging field focusing in the enhancement of agriculture and rural development through improve in information and data processing. The data-intensive characteristic of these domains is evidenced by the great variety of data to be processed and analyzed. Countrywide estimates rely on maps, spectral images from satellites, and tables with rows for states, regions, municipalities, or farmers. Precision agriculture (PA) relies on maps of within field variability of soil and plant... C.L. Bazzi, E.P. Jasse, E.G. Souza, P.S. Magalhães, G.K. Michelon, K. Schenatto, A. Gavioli

22. Optimized Soil Sampling Location in Management Zones Based on Apparent Electrical Conductivity and Landscape Attributes

One of the limiting factors to characterize the soil spatial variability is the need for a dense soil sampling, which prevents the mapping due to the high demand of time and costs. A technique that minimizes the number of samples needed is the use of maps that have prior information on the spatial variability of the soil, allowing the identification of representative sampling points in the field. Management Zones (MZs), a sub-area delineated in the field, where there is relative homogeneity in... G.K. Michelon, G.M. Sanches, I.Q. Valente, C.L. Bazzi, P.L. De menezes, L.R. Amaral, P.G. Magalhaes

23. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer Response

Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three growing... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer

24. Spatial Decision Support System: Controlled Tile Drainage – Calculate Your Benefits

Climate projection studies suggest that extreme heat waves and floods will become more frequent, affecting future crop yields by 20%-30%, globally. Managing vulnerability and risk begins at the farm level where best management practices can reduce the impacts associated with extreme weather events. A practice that can assist in mitigating the impact of some extreme events is controlled tile drainage (CTD). With CTD, producers use water flow control structures to manage the drainage of water from... A. Kross, G. Kaur, D. Callegari, D. Lapen, M. Sunohara, H. Mcnairn, H. Rudy, L. Van vliet

25. Harness the Power of the Internet to Improve Yield

It’s rare to find a fertile farm or ranch that has complete cellular coverage across the entirety of its property. Because networking options like Wi-Fi are limited by restricted infrastructure in these areas, maintaining a reliable flow of connectivity is difficult. Yet, even if consistent cellular coverage is available, it’s frequently cost prohibitive for farm monitoring. Similarly, alternate wireless devices that require batteries aren’t practical because of high maintenance... M. Finegan, D. Wallace

26. Evaluation of an Artificial Neural Network Approach for Prediction of Corn and Soybean Yield

The ability to predict crop yield during the growing season is important for crop income, insurance projections and for evaluating food security. Yet, modeling crop yield is challenging because of the complexity of the relationships between crop growth and the interrelated predictor variables. Artificial neural networks (ANNs) are useful for such complex systems as they can capture non-linear relationships of data without explicitly knowing the underlying processes. In this study, an ANN-based... A. Kross, G. Kaur, E. Znoj, D. Callegari, M. Sunohara, H. Mcnairn, D. Lapen, H. Rudy, L. Van vliet

27. Development of a Machine Vision Yield Monitor for Shallot Onion Harvesters

Crop yield estimation and mapping are important tools that can help growers efficiently use their available resources and have access to detailed representations of their farm. Technical advancements in computer vision have improved the detection, quality assessment and yield estimation processes for crops, including apples, citrus, mangoes, maize, figs and many other fruits. However, similar methods capable of exporting a detailed yield map for vegetable crops have not yet been fully developed.... A.A. Boatswain jacques, V.I. Adamchuk, G. Cloutier, J.J. Clark, C. Miller

28. Economic Potential of RoboWeedMaps - Use of Deep Learning for Production of Weed Maps and Herbicide Application Maps

In Denmark, a new IPM ‘product chain’ has been constructed, which starts with systematic photographing of fields and ends up with field- or site-specific herbicide application. A special high-speed camera, mounted on an ATV took sufficiently good pictures of small weed plants, while driving up to 50 km/h. Pictures were uploaded to the RoboWeedMaps online platform, where appointed internal- and external persons with agro-botanical experience executed ‘virtual field inspection’... P. Rydahl, O. Boejer, N. Jensen, B. Hartmann, R. Jorgensen, M. Soerensen, P. Andersen, L. Paz, M.B. Nielsen

29. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

30. A Bayesian Network Approach to Wheat Yield Prediction Using Topographic, Soil and Historical Data

Bayesian Network (BN) is the most popular approach for modeling in the agricultural domain. Many successful applications have been reported for crop yield prediction, weed infestation, and crop diseases. BN uses probabilistic relationships between variables of interest and in combination with statistical techniques the data modeling has many advantages. The main advantages are that the relationships between variables can be learned using the model as well as the potential to deal with missing... M. Karampoiki, L. Todman, S. Mahmood, A. Murdoch, D. Paraforos, J. Hammond, E. Ranieri

31. Use of Remotely Measured Potato Canopy Characteristics As Indirect Yield Estimators

Prediction of potato yield before harvest is important for making agronomic and marketing decisions. Active optical sensors (AOS) are rarely used together with other hand-held instruments for monitoring potato growth, including yield prediction. The aim of the research was to determine the relationship between manually and remotely measured potato crop characteristics throughout the growing season and yield in commercial potato fields. Objective was also to identify crop characteristics that most... S.M. Samborski, J. Szatylowicz, T. Gnatowski, R. Leszczyńska, M. Thornton, O. Walsh

32. Farming for a Greener Future: the Behavioural Drive Behind German Farmers’ Alternative Fuel Machinery Purchase Intentions

Climate change due to greenhouse gas emissions, e.g. anthropogenic carbon dioxide (CO2), in the atmosphere will lead to damages caused by global warming, increases in heavy rainfall, flooding as well as permafrost melt. One of the main issues for reducing greenhouse gas emissions is the dependence on oil for fueling transportation and other sectors. Accordingly, policy makers aim to reduce dependency on fossil fuels with the accelerated roll-out of renewable energy. Among others, the... M. Michels, V. Bonke, H. Wever, O. Mußhoff

33. On-farm Evaluation of the Potential Benefits of Variable Rate Seeding for Corn in Minnesota

Many farmers in Minnesota are interested in adopting variable rate seeding technology for corn, however, little has been reported about their potential benefits. The objectives of this study were to 1) determine within-field variability of optimal seeding rates, and 2) evaluate the potential benefits of variable rate seeding in commercial corn fields in Minnesota. Four on-farm variable rate seeding trials were conducted in Minnesota in 2022 and 2023, with seeding rates ranging from 31,000 to 41,000... Y. Miao, A. Kechchour, S. Folle, K. Mizuta

34. Crop and Water Monitoring Networks with Low-cost, Internet of Things Technology

Making meaningful changes in agroecosystems often requires the ability to monitor many environmental parameters to accurately identify potential areas for improvement in water quality and crop production. Increasingly, research questions are requiring larger and larger monitoring networks to draw applicable insights for both researchers and producers. However, acquiring enough sensors to address a particular research question is often cost-prohibitive, making it harder to draw meaningful conclusions... A.J. Brown, E. Deleon, E. Wardle

35. Optimizing Soil Nutrient Management: Agricultural Policy/environmental Extender (APEX) Model Simulation for Field Scale Phosphorous Loss Reduction in Virginia

Managing soil nutrients is crucial for enhancing crop productivity and meeting consumptions demands while minimizing environmental impacts. Sustainable agriculture relies on well-planned soil nutrient management strategies. Phosphorous (P) stands out among the 16 essential soil nutrients, particularly in Virginia, where natural P levels are typically low. Adequate amount of P is necessary for the early root formation and plant growth. However, excess amount of P in the soil leads to increase the... S. Kumari, J. Rathore, S. Mitra, M. Gardezi, O. Walsh

36. Predicting Soybean Yield Using Remote Sensing and a Machine Learning Model

Soybean (Glycine max L.), a nutrient-rich legume crop, is an important resource for both livestock feed and human dietary needs. Accurate preharvest yield prediction of soybeans can help optimize harvesting strategies, enhance profitability, and improve sustainability. Soybean yield estimation is inherently complex because yield is influenced by many factors including growth patterns, varying crop physiological traits, soil properties, within-field variability, and weather conditions. The objective... M. Gardezi, O. Walsh, D. Joshi, S. Kumari, D.E. Clay, J. Rathore