Proceedings

Find matching any: Reset
Arnall, B
Abd Aziz, S
Arno, J
Ascough II, J.C
Ahrends, H.E
Alahe, M
Archontoulis, S
Almeida, S.L
Amin, S
Avila, E.N
Add filter to result:
Authors
Arno, J
DEL MORAL, I
Escolà, A
Company, J
MARTÍNEZ-CASASNOVAS, J.A
MASIP, J
SANZ, R
ROSELL, J.R
Delgado, J.A
Ascough II, J.C
Arnall, B
Weckler, P
Morris, C
Arnall, B
Alderman, P
Kidd, J
Sutherland, A
Bejo, S
Abdol Lajis, G
Abd Aziz, S
Abu Seman, I
Ahamed, T
Puntel, L
Pagani, A
Archontoulis, S
Thompson, L
Puntel, L
Archontoulis, S
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Ahrends, H.E
Lajunen, A
Avila, E.N
Bazzi, C.L
Oliveira, W.K
Schenatto, K
Sobjak, R
Rocha, D.M
Moulay, H
Arnall, B
Phillips, S
PHILLIPS, S
Arnall, B
Maatougui, M
Kemeshi, J.O
Chang, Y
Yadav, P.K
Alahe, M
Alahe, M
Kemeshi, J.O
Chang, Y
Won, K
Yang, X
Sher, M
Alahe, M
Chang, Y
Kemeshi, J.O
Gummi, S
Menendez III, H
Alahe, M
Gummi, S
Kemeshi, J.O
Chang, Y
Gummi, S
Alahe, M
Chang, Y
Pack, C
Rossi, C
Almeida, S.L
Sysskind, M.N
Moreno, L.A
Felipe dos Santos, A
Lacerda, L
Vellidis, G
Pilcon, C
Orlando Costa Barboza, T
Akin, S
Arnall, B
Derrick, J
Akin, S
Sharry, R
Arnall, B
Topics
Proximal Sensing in Precision Agriculture
Precision Conservation and Carbon Management
Precision A to Z for Practitioners
Unmanned Aerial Systems
Precision Crop Protection
Decision Support Systems
Decision Support Systems
Education and Outreach in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Edge Computing and Cloud Solutions
Site-Specific Pasture Management
Precision Agriculture and Global Food Security
Robotics and Automation with Row and Horticultural Crops
Artificial Intelligence (AI) in Agriculture
On Farm Experimentation with Site-Specific Technologies
Type
Poster
Oral
Year
2012
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results20 paper(s) found.

1. Mapping the Leaf Area Index In Vineyard Using a Ground-Based LIDAR Scanner

The leaf area index (LAI) is defined as the one-sided leaf area per unit ground area and is probably the most widely used index to characterize grapevine vigour. However, direct LAI measurement requires the use of destructive leaves sampling methods which are costly and time-consuming and so are other indirect methods. Faced with these techniques, vineyard leaf area can be indirectly estimated using ground-based LIDAR sensors that scan the vines and get information about the geometry and/or structure... J. Arno, I. Del moral, A. Escolà, J. Company, J.A. MartÍnez-casasnovas, J. Masip, R. Sanz, J.R. Rosell

2. A New Version of the Nitrogen Trading Tool (NTT) To Assess Nitrogen Management across the USA

A recent study from the USDA Economic Research Service (September 2011) reported that about one-third of U.S. cropland was found to meet the requirements for nutrient... J.A. Delgado, J.C. Ascough ii

3. Sensor Algorithms 101

This presentation will break down the algorithms used for Optical Sensor Based Nitrogen rate recommendations. The group will walk through the mechanics and agronomics behind the most commonly used equations, in order to turn the black boxes into slightly muddied waters. ... B. Arnall

4. Weather Impacts on UAV Flight Availability for Agricultural Purposes in Oklahoma

This research project analyzed 21 years of historical weather data from the Oklahoma Mesonet system.  The data examined the practicality of flying unmanned aircraft for various agricultural purposes in Oklahoma.  Fixed-wing and rotary wing (quad copter, octocopter) flight parameters were determined and their performance envelope was verified as a function of weather conditions.  The project explored Oklahoma’s Mesonet data in order to find days that are acceptable for flying... P. Weckler, C. Morris, B. Arnall, P. Alderman, J. Kidd, A. Sutherland

5. Detecting Basal Stem Rot (BSR) Disease at Oil Palm Tree Using Thermal Imaging Technique

Basal stem rot (BSR), caused by Ganoderma boninense is known as the most damaging disease in oil palm plantations in Southeast Asia. Ganoderma could reduce the productivity of oil palm plantations and potentially reduce the market value of palm oil in Malaysia. Early disease management of Ganoderma could prevent production losses and reduce the cost of plantation management. This study focuses on identifying the thermal properties of healthy and BSR-infected tree using a thermal imaging... S. Bejo, G. Abdol lajis, S. Abd aziz, I. Abu seman, T. Ahamed

6. Prediction of Corn Economic Optimum Nitrogen Rate in Argentina

Static (i.e. texture and soil depth) and dynamic (i.e. soil water, temperature) factors play a role in determining field or subfield economically optimal N rates (EONR). We used 50 nitrogen (N) trials from Argentina at contrasting landscape positions and soil types, various soil-crop measurements from 2012 to 2017, and statistical techniques to address the following objectives: a) characterize corn yield and EONR variability across a multi-landscape-year study in central west Buenos Aires,... L. Puntel, A. Pagani, S. Archontoulis

7. Evaluating APSIM Model for Site-Specific N Management in Nebraska

Many approaches have been developed to estimate the optimal N application rates and increase nitrogen use efficiency (NUE). In particular, in-season and variable-rate fertilizer applications have the potential to apply N during the time of rapid plant N uptake and at the rate needed, thereby reducing the potential for nitrogen fertilizer losses. However, there remains great challenges in determining the optimal N rate to apply in site-specific locations within a field in a given year. Additionally,... L. Thompson, L. Puntel, S. Archontoulis

8. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito

9. Proximal Sensing of Penetration Resistance at a Permanent Grassland Site in Southern Finland

Proximal soil sensing allows for assessing soil spatial heterogeneity at a high spatial resolution. These data can be used for decision support on soil and crop agronomic management. Recent sensor systems are capable of simultaneously mapping several variables, such as soil electrical conductivity (EC), spectral reflectance, temperature, and water content, in real-time. In autumn 2021, we used a commercial soil scanner (Veris iScan+) to derive information on soil spatial variability for a permanent... H.E. Ahrends, A. Lajunen

10. Geographic Database in Precision Agriculture for the Development of AI Research

Agriculture 4.0 has profoundly transformed production processes by incorporating technologies such as Precision Agriculture, Artificial Intelligence, the Internet of Things, and telemetry. This evolution has enabled more accurate and timely decision-making in agriculture. In response to this movement, the Precision Agriculture Laboratory (AgriLab) of UTFPR, located in Medianeira, proposes the establishment of a consistent and standardized database. This database is continually updated with surveys... E.N. Avila, C.L. Bazzi, W.K. Oliveira, K. Schenatto, R. Sobjak, D.M. Rocha

11. Comparative Analysis of Different On-the-go Soil Sensor Systems

This study is part of the field of precision agriculture. This management mode is one of the great revolutions in the agriculture field, and it means better management of farm inputs such as fertilizers, herbicides, and seeds by applying the right amount at the right place and at the right time. To succeed in this, we should dispose of a tool that allows a precise assessment of the soil’s physical state. Thus, on-the-go soil sensors can be used as a creative tool to gain better... H. Moulay, B. Arnall, S. Phillips

12. The Evaluation of NDVI Response Index Consistency Using Proximal Sensors, UAV and Satellites

The Response Index NDVI (RINDVI) is described as the response of crops to additional nitrogen (N) fertilizer. It is calculated by dividing the NDVI of the high-N plot (N-rich strip) by the NDVI of the zero-N plot or farmer's practice where less pre-plant N was applied (Arnall and al., 2016). RI values are used to predict yield and monitor top dress N fertilization. Many research has been carried out to determine the difference... S. Phillips, B. Arnall, M. Maatougui

13. Comparing Global Shutter and Rolling Shutter Cameras for Image Data Collection in Motion on a UGV

In a bid to drive the adoption of precision farming (PF) technology by reducing the cost of developing an Unmanned Ground Vehicle (UGV), during the Reduction-To-Below-Two grand (R2B2) project we compared Arducam’s AR0234, a global shutter camera (GSC) to their IMX462, a rolling shutter camera (RSC). Since the cost of the AR0234 is approximately three times the price of the IMX462, the comparison was done to determine the possibility of using the latter for image data collection in place... J.O. Kemeshi, Y. Chang, P.K. Yadav, M. Alahe

14. Securing Agricultural Data with Encryption Algorithms on Embedded GPU Based Edge Computing Devices

Smart Agriculture (SA) has captured the interest of both the agricultural business and the scientific community in recent years. Overall, SA aims to help the agricultural and food industry to avoid crop failures, loss of revenues as well as help farmers use inputs (such as fertilizers and pesticides) more efficiently by utilizing Internet of Things (IoT) devices and computing systems. However, rapid digitization and reliance on data-driven technologies create new security threats that can defeat... M. Alahe, J.O. Kemeshi, Y. Chang, K. Won, X. Yang, M. Sher

15. Design of an Automatic Travelling Electric Fence System for Sustainable Grazing Management

Fences are used in Precision Livestock Farming (PLF) to prevent herbivores from overgrazing and under grazing forages. While effective in controlling animal entry and exit, traditional fences are not flexible enough to meet the needs of both foraging animals and plants in terms of both nutrient availability and physiological demands. An electric fencing system is a form of traditional fencing that employs an electric charge to create a barrier and dissuade animals or people from crossing it. Even... M. Alahe, Y. Chang, J.O. Kemeshi, S. Gummi, H. Menendez iii

16. Securing Agricultural Imaging Data in Smart Agriculture: a Blockchain-based Approach to Mitigate Cybersecurity Threats and Future Innovations

Smart agriculture (SA) is a new technology that combines the Internet of Things (IoT) with a variety of smart devices, such as drones, unmanned ground vehicles (UGVs), and computer systems. The integration of technology improvements in SA has led to an increase in cybersecurity concerns, specifically pertaining to the protection of sensitive agricultural image data. It’s necessary to better understand SA network systems; establish stronger network structures; identify different types and... M. Alahe, S. Gummi, J.O. Kemeshi, Y. Chang

17. Voronoi-based Ant Colony Optimization Approach: Autonomous Robotic Swarm Navigation for Crop Disease Detection

The early detection of agricultural diseases is essential for sustaining food production and economic viability over the long term. To improve disease detection in agriculture, this paper presents an innovative computational approach that utilizes the Voronoi-based Ant Colony Optimization (V-ACO) algorithm with Swarm Robotics (SR). Inspired by the social behaviors observed in insect colonies such as honeybees and ants, SR offers new opportunities for precision farming. SR utilizes the coordinated... S. Gummi, M. Alahe, Y. Chang, C. Pack

18. Combining Remote Sensing and Machine Learning to Estimate Peanut Photosynthetic Parameters

The environmental conditions in which plants are situated lead to changes in their photosynthetic rate. This alteration can be visualized by pigments (Chlorophyll and Carotenoids), causing changes in plant reflectance. The goal of this study was to evaluate the performance of different Machine Learning (ML) algorithms in estimating fluorescence and foliar pigments in irrigated and rainfed peanut production fields. The experiment was conducted in the southeast of Georgia in the United States in... C. Rossi, S.L. Almeida, M.N. Sysskind, L.A. Moreno, A. Felipe dos santos, L. Lacerda, G. Vellidis, C. Pilcon, T. Orlando costa barboza

19. The Evaluation of Spatial Response to Potassium in Soybeans

In agriculture, the nutrients that are in the largest demand are nitrogen (N), phosphorus (P), and potassium (K), as product demand increases  so does demand for fertilizers. In the case of potassium, most soils can provide potassium in amounts that exceed crop demand; however the potassium within the soil is not always readily available to the crop, this leads to producers apply potassium to their crops even though soil tests suggests otherwise. One such crop where potassium is in demand... S. Akin, B. Arnall

20. Influence of Potassium Variability on Soybean Yield

Due to its role as a plant essential nutrient, Potassium (K) serves as a fundamental component for plant growth. Soybeans are heavily reliant upon this nutrient for root growth and the production of pods, so much so that after nitrogen, potassium is the second most in-demand nutrient. Much of the overall soybean crop grown in Oklahoma is not managed with the fertility of K directly in mind. However, as the potential and expectation for greater yield increases, so does interest from producers... J. Derrick, S. Akin, R. Sharry, B. Arnall