Proceedings

Find matching any: Reset
Maja, J.M
Morgan, S
Majdi, M
Alchnatis, V
Admasu, W.A
Add filter to result:
Authors
Majdi, M
Benjamin, D
Marie-France, D
Khalilian, A
Qiao, X
Payero, J.O
Maja, J.M
Privette, C.V
Han, Y.J
Meron, M
Tsipris, J
Orlov, V
Alchnatis, V
Cohen, Y
Maritan, E
Behrendt, K
Lowenberg-DeBoer, J
Morgan, S
Rutter, M.S
Mandal, D
Longchamps, L
Khosla, R
Admasu, W.A
Joshi, R
Khosla, R
Mandal, D
Unruh, R
Admasu, W.A
Unruh, R
Admasu, W.A
Mandal, D
Joshi, R
Khosla, R
Admasu, W.A
Mandal, D
Khosla, R
Admasu, W.A
Mandal, D
Khosla, R
Topics
Food Security and Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Remote Sensing Application / Sensor Technology
Site-Specific Pasture Management
Artificial Intelligence (AI) in Agriculture
In-Season Nitrogen Management
Drainage Optimization and Variable Rate Irrigation
Decision Support Systems
Digital Agriculture Solutions for Soil Health and Water Quality
Type
Poster
Oral
Year
2012
2016
2008
2024
Home » Authors » Results

Authors

Filter results9 paper(s) found.

1. Bayesian Methods for Predicting LAI and Soil Moisture

Crop models describe the growth and development of a crop interacting with soil, climate, and management... M. Majdi, D. Benjamin, D. Marie-france

2. Utilizing Space-based Technology for Cotton Irrigation Scheduling

Accurate soil moisture content measurements are vital to precision irrigation management. Electromagnetic sensors such as capacitance and time domain reflectometry have been widely used for measuring soil moisture content for decades. However, to estimate average soil moisture content over a large area, a number of ground-based in-situ sensors would need to be installed, which would be expensive and labor intensive. Remote sensing using the microwave spectrum (such as GPS signals) has been used... A. Khalilian, X. Qiao, J.O. Payero, J.M. Maja, C.V. Privette, Y.J. Han

3. Crop Water Stress Mapping for Site Specific Irrigation by Thermal Imagery and Artificial Reference Surfaces

Variable rate irrigation machines or solid set systems have become technically feasible; however, crop water status mapping is necessary as a blueprint to match irrigation quantities to site-specific crop water demands. Remote thermal sensing can provide these maps in sufficient detail and at a timely delivery. In a set of aerial and ground scans at the Hula Valley, Israel, digital crop water stress maps were generated using geo-referenced high- resolution thermal imagery and artificial reference... M. Meron, J. Tsipris, V. Orlov, V. Alchnatis, Y. Cohen

4. A Multi-objective Optimisation Analysis of Virtual Fencing in Precision Grazing

Virtual fencing is a precision livestock farming tool consisting of invisible boundaries created via Global Navigation Satellite Systems (GNSS) and managed remotely and in real time by app-based technology. Grazing livestock are equipped with battery-powered collars capable of delivering audio or vibration cues and possibly electric shocks when approaching or crossing an invisible boundary. Virtual fencing makes precision grazing possible without the need for physical fences. This technology originated... E. Maritan, K. Behrendt, J. Lowenberg-deboer, S. Morgan, M.S. Rutter

5. Optimal Placement of Soil Moisture Sensors in an Irrigated Corn Field

Precision agricultural practices rely on characterization of spatially and temporally variable soil and crop properties to precisely synchronize inputs (water, fertilizer, etc.) to crop needs; thereby enhancing input use efficiency and farm profitability. Generally, the spatial dependency range for soil water content is shorter near the soil surface compared to deeper depths, suggesting a need for more sampling locations to accurately characterize near-surface soil water content. However, determining... D. Mandal, L. Longchamps, R. Khosla

6. Delineation of Site-Specific Management Zones using Sensor-based Data for Precision N management

Nitrogen is a critical nutrient influencing crop yield, but the common practice of uniform application of nitrogen fertilizer across a field often results in spatially variable nitrogen availability for the crop, leading to over-application in some areas and under-application in others. This imbalance can cause economic losses and significant environmental issues. Precision nitrogen application involves application of N fertilizers based on soil conditions and crop requirements. One approach for... R. Joshi, R. Khosla, D. Mandal, R. Unruh, W.A. Admasu

7. Delineating Dynamic Variable Rate Irrigation Management Zones

Agriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management offers... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla

8. Coupling Macro-scale Variability in Soil and Micro-scale Variability in Crop Canopy for Delineation of Site-specific Management Grid

The efficient application of fertilizers via Site-Specific Management Units (SSMUs) or Management Zones (MZs) can significantly enhance crop productivity and nitrogen use efficiency. Conventional mathematical and data-driven clustering methods for MZ delineation, while prevalent, often lack precision in identifying productivity zones. This research introduces a knowledge-driven productivity zone to mitigate these limitations, offering a more precise and efficacious approach. The hypothesis... W.A. Admasu, D. Mandal, R. Khosla

9. Hyperspectral Sensing to Estimate Soil Nitrogen and Reduce Soil Sampling Intensity

Recognizing soil's critical role in agriculture, swift and accurate quantification of soil components, specifically nitrogen, becomes paramount for effective field management. Traditional laboratory methods are time-consuming, prone to errors, and require hazardous chemicals. Consequently, this research advocates the use of non-imaging hyperspectral data and VIS-NIR spectroscopy as a safer, quicker, and more efficient alternative. These methods take into account various soil components, including... W.A. Admasu, D. Mandal, R. Khosla