Proceedings
Authors
| Filter results7 paper(s) found. |
|---|
1. Understanding Spatial and Temporal Variability of Wheat Yield: An Integrated System ApproachSpatial variation in soil water and nitrogen are often the causes of crop yield spatial variability due to their influence on the uniformity of plant stand at emergence and for in-season stresses. Natural and acquired variability in production capacity or potential within a field causes uniform agronomic management practices for the field to be correct in some parts and inappropriate in others. To achieve... B. Basso, C. Fiorentino, D. Cammarano, A. D'errico |
2. Shared Protocols and Data Template in Agronomic TrialsDue to the overlap of many disciplines and the availability of novel technologies, modern agriculture has become a wide, interdisciplinary endeavor, especially in Precision Agriculture. The adoption of a standard format for reporting field experiments can help researchers to focus on the data rather than on re-formatting and understanding the structure of the data. This paper describes how a European consortium plans to: i) create a “handbook” of protocols for reporting definitions,... D. Cammarano, D. Drexler, P. Hinsinger, P. Martre, X. Draye, A. Sessitsch, N. Pecchioni, J. Cooper, W. Helga, A. Voicu |
3. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and IndianaPrecision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor |
4. Spatial Predictive Modeling to Quantify Soybean Seed Quality Using Remote Sensing and Machine LearningIn recent years, the advancement of artificial intelligence technologies combined with satellite technology is revolutionized agriculture through the development of algorithms that help producers become more sustainable. This could improve the conditions of farmers not only by maximizing their production and minimizing environmental impact but also due to better economic benefits by allowing them to access high-value-added markets. Furthermore, the use of predictive tools that could improve the... C. Hernandez, P. Kyveryga, A. Correndo, A. Prestholt, I. Ciampitti |
5. Fertigation Management Strategies Effect on Residual Nitrates in the Soil Profile and Ground WaterNitrogen is an input that is vital for growth and productivity within the corn belt states of the U.S. However, when nitrogen as an input into agricultural cropping systems is often over-applied and thus not optimally utilized by the cropping system. Therefore, it is at risk of loss within the environment through processes of leaching, denitrification, and volatilization. This is a major concern in Nebraska, as the reality is that much of the state’s groundwater has been contaminated with... K.J. Bathke, T. Cross, J.D. Luck |
6. Sensor Based Fertigation ManagementSensor-based fertigation management (SBFM) is a relatively new technology for directing nitrogen (N) decisions, specifically tailored for delivery of N via center pivot irrigation systems (fertigation). The development of SBFM began in 2018 at the University of Nebraska-Lincoln with the help of cooperating producers across the state. Over two dozen field sites provided testbeds for the development and evaluation of the technology. The key technique in this fertigation approach is the... J. Stansell, J.D. Luck, T. Cross, K.J. Bathke, T. Smith |
7. From Scientific Literature to the End User: Democratizing Access to Data Products Through Interactive ApplicationsIn recent years, the sustained advance in the creation of powerful programming libraries is allowing not only the creation of complex models with predictive capabilities but also revolutionizing visualization processes and the deployment of interactive applications. Some of these tools, such as Streamlit or Shiny frameworks in languages such as Python or R, allow us to create from simple applications with friendly interfaces to complex tools. These interactive digital decision dashboards allow... C. Hernandez, A. Correndo, J. Lacasa, P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti |