Proceedings
Authors
| Filter results14 paper(s) found. |
|---|
1. Development Of Unmanned Aerial Vehicles For Site-specific Crop Production Management... Y. Huang, W.C. Hoffmann, Y. Lan, S.J. Thomson, B.K. Fritz |
2. Determination Of Crop Injury From Aerial Application Of Glyphosate Using Vegetation Indices And GeostatisticsInjury to crops caused by off-target drift of glyphosate can seriously reduce growth and yield, and is of great concern to farmers and aerial applicators. Determining an indirect method for assessing the levels and extent of crop injury could support management decisions. The objectives of this study were to evaluate multiple vegetation indices (VIs) as surrogate variables for glyphosate injury identification and to evaluate the combined use of Geostatistical methods and the VIs to assess... B. Ortiz, S.J. Thomson, Y. Huang, K. Reddy |
3. Multisensor Data Fusion Of Remotely Sensed Imagery For Crop Field MappingA wide variety of remote sensing data from airborne hyperspectral and multispectral images is available for site-specific management in agricultural application and production. Aerial imaging system may offer less expensive and high spatial resolution imagery with Near Infra-Red, Red, Green and Blue spectral wavebands. Hyperspectral sensor provides hundreds of spectral bands. Multisensor data fusion provides an effective paradigm for remote sensing applications by synthesizing... Y. Lan, H. Zhang, C. Yang, D. Martin, R. Lacey, Y. Huang, W.C. Hoffmann, P. Moulton |
4. Economic Potential Of Monitoring Protein Content At Harvest And Blending Wheat GrainPrecision agriculture has been primarily focused on the management of inputs but recently developed technologies that monitor grain quality at harvest create the opportunity to manage outputs spatially. Provided specific product qualities achieve higher prices, monitoring, separation and blending may be economically justified. This paper analyzes the potential economic effects of blending different grain qualities at the farm level. We estimated sub-field specific... A. Meyer-aurich, M. Gandorfer, A. Weersink, P. Wagner |
5. Response and Positioning Accuracy of a Variable-Rate Aerial Application System and Use of Enhanced Imagery for Creation of Prescription MapsExperiments were conducted to evaluate a variable rate aerial application system in the field, and experiences with iterative system improvement are outlined. Spray cards placed in the field determined application accuracy, and system... Y. Huang, S.J. Thomson |
6. Weed Identification From Seedling Cabbages Using Visible And Near-Infrared Spectrum AnalysisTarget identification is one of the main research content and also a key point in precision crop protection. The main purpose of the study is to choose the characteristic wavelengths (CW for short) to classify the cabbages and the weeds at their seedling stage using different data analysis methods. Using a handheld full-spectrum FieldSpec-FR, the canopies of the seedling plants, cabbage ‘8398, cabbage ‘zhonggan’, Barnyard grass, green foxtail, goosegrass,... W. Deng, X. Wang, C. Zhao, Y. Huang |
7. In-season Diagnosis of Rice Nitrogen Status Using Crop Circle Active Canopy Sensor and UAV Remote SensingActive crop canopy sensors have been used to non-destructively estimate nitrogen (N) nutrition index (NNI) for in-season site-specific N management. However, it is time-consuming and challenging to carry the hand-held active crop sensors and walk across large paddy fields. Unmanned aerial vehicle (UAV)-based remote sensing is a promising approach to overcoming the limitations of proximal sensing. The objective of this study was to combine unmanned aerial vehicle (UAV)-based remote sensing system... J. Lu, Y. Miao, Y. Huang, W. Shi |
8. Assessing Soybean Injury from Dicamba Using RGB and CIR Images Acquired on Small UAVsDicamba is an herbicide used for postemegence control of several broadleaf weeds in corn, grain sorghum, small grains, and non-cropland. Currently, dicamba-tolerant (DT) soybean and cotton are under development, which provide new options to combat weeds resistant to glyphosate, the most widely used herbicide. With the use of DT-trait cotton and soybean, off-target dicamba drift onto susceptible crops will become a concern. To relate soybean injury to different rates of dicamba applications,... Y. Huang, H. Brand, D. Pennington, K. Reddy, S.J. Thomson |
9. Barriers to Adoption of Smart Farming Technologies in GermanyThe number of smart farming technologies available on the market is growing rapidly. Recent surveys show that despite extensive research efforts and media coverage, adoption of smart farming technologies is still lower than expected in Germany. Media analysis, a multi stakeholder workshop, and the Adoption and Diffusion Outcome Prediction Tool (ADOPT) (Kuehne et al. 2017) were applied to analyze the underlying adoption barriers that explain the low to moderate adoption levels of smart farming... M. Gandorfer, S. Schleicher, K. Erdle |
10. Flat Payoff Functions and Site-Specific Crop ManagementWithin the neighbourhood of any economically “optimal” management system, there is a set of alternative systems that are only slightly less attractive than the optimum. Often this set is large; in other words, the payoff function is flat within the vicinity of the optimum. This has major implications for the economics of variable-rate site-specific crop management. The flatter the payoff function, the lower the benefits of precision in the adjustment of input rates spatially within... D. Pannell, A. Weersink, M. Gandorfer |
11. Economic Evaluation of Automatic Heat Detection Systems in Dairy FarmingAlthough heat detection makes a relevant contribution to good reproduction performance of dairy cattle, available studies on the economic evaluations of automatic heat detection systems are limited. Therefore, the objective of this article is to provide an economic evaluation of using automatic heat detection. The effect of different heat detection rates on gross margin is modelled with SimHerd (SimHerd A/S, Denmark). The analysis considers all additional investment costs in automatic heat detection.... J. Pfeiffer, M. Gandorfer, J.F. Ettema |
12. Risk Efficiency of Site-Specific Nitrogen Management with Respect to Grain QualityProfitability analyses of site-specific nitrogen management strategies have often failed to provide reasons for adoption of precision farming implements. However, often effects of precision farming on product quality and price premiums were not taken into account. This study aims to evaluate comparative advantages of site-specific nitrogen management over uniform nitrogen management with respect to aspects of risk, considering fertilizer effects on grain quality and price premiums. We developed... A. Meyer-aurich, Y. Karatay, M. Gandorfer |
13. Evaluating the Potential of In-season Spatial Prediction of Corn Yield and Responses to Nitrogen by Combining Crop Growth Modeling, Satellite Remote Sensing and Machine LearningNitrogen (N) is a critical yield-limiting factor for corn (Zea mays L.). However, over-application of N fertilizers is a common problem in the US Midwest, leading to many environmental problems. It is crucial to develop efficient precision N management (PNM) strategies to improve corn N management. Different PNM strategies have been developed using proximal and remote sensing, crop growth modeling and machine learning. These strategies have both advantages and disadvantages. There is... X. Zhen, Y. Miao, K. Mizuta, S. Folle, J. Lu, R.P. Negrini, G. Feng, Y. Huang |
14. In-season Diagnosis of Corn Nitrogen and Water Status Using UAV Multispectral and Thermal Remote SensingFor irrigated corn fields, how to optimize nitrogen (N) and irrigation simultaneously is a great challenge. A promising strategy is to use remote sensing to diagnose corn N and water status during the growing season, which can then be used to guide in-season variable rate N application and irrigation management. The objective of this study was to evaluate the effectiveness of UAV multispectral and thermal remote sensing in simultaneous diagnosis of corn N and water status. Two field experiments... Y. Miao, A. Kechchour, V. Sharma, A. Flores, L. Lacerda, K. Mizuta, J. Lu, Y. Huang |