Proceedings

Find matching any: Reset
Zhang, Y
Bai, F
Lukwesa, D
Jedmowski, C
Zoran, C
Huang , W
Levi, M
Myers, D.B
March, M
Moorhead, R.J
Bettiol, G.M
Jin, V
Rosa, H
Berg, A
Hedley, M.J
Maki, M
Molin, J.P
Huang, S
Lai, C
Bertani, T.D
Michiels, P
Rodriguez, M
Lee, W
Jara, L.A
Muschietti, P
Landivar, J
Lehmann, J
Grove, J
Ewanik, C
REDDY, K.A
Lampinen, B
Bongiovanni, R
Busscher, W.J
Add filter to result:
Authors
Bettiol, G.M
Inamasu, R.Y
Rabello, L.M
Bernardi, A.C
Campana, M
Oliveira, P.P
Amaral, L.R
Portz, G
Rosa, H
Molin, J
Hongo, C
Furukawa, T
Sigit, G
Maki, M
Honma, K
Yoshida, K
Oki, K
Shirakawa, H
Marine, L
Manon, M
Claire, G
Laurent, P
Mostafa, F
Zoran, C
Naima, B
Sébastien, D
Olivier, G
PATIL, V.C
GOWDA, H.H
REDDY, K.A
SHANWAD, U.K
Dong , Y
Wang , J
Li , C
Yang, G
Song, X
Huang , W
Kitchen, N.R
Sudduth, K.A
Myers, D.B
Shaver, T
Schmer, M
Irmak, S
Van Donk, S
Wienhold, B
Jin, V
Bereuter, A
Francis, D
Rudnick, D
Ward, N
Hendrickson, L
Ferguson, R.B
Adamchuk, V.I
Acosta, L.E
Jara, L.A
Ortega, R.A
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Khosla, R
Jiang, R
Bareth, G
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Jiang, R
Chen, X
Bareth, G
Rodriguez, M
Civeira, G
Urricariet, S
Muschietti, P
Lavado, R
Draganova, I
Yule, I.J
Betteridge, K
Hedley, M.J
Stafford, K.J
Stone, K
Bauer, P.J
Busscher, W.J
Millen, J.A
Evans, D.E
Strickland, E.E
Udompetaikul, V
Upadhyaya, S
Lampinen, B
Slaughter, D
Grove, J
Pena-Yewtukhiw, E.M
Lee, W
Kumar, A
Ehsani, R
Yang, C
Albrigo, L.G
Pena-Yewtukhiw, E.M
Grove, J
Lai, C
Belsky, C
Anselmi, A.A
Federizzi , L.C
Bredemeier, C
Molin, J.P
Eitelwein, M.T
Molin, J.P
Spekken, M
Trevisan, R.G
Samiappan, S
Henry, B
Moorhead, R.J
Hock, M.W
Huang, S
Miao, Y
Yuan, F
Gnyp, M.L
Yao, Y
Cao, Q
Lenz-Wiedemann, V
Bareth, G
Canata, T.F
Molin, J.P
Colaço, A.F
Trevisan, R.G
Fiorio, P.R
Martello, M
Trevisan, R.G
Eitelwein, M.T
Colaço, A.F
Molin, J.P
Portz, G
Jasper, J
Molin, J.P
Khakbazan, M
Moulin, A
Huang, J
Michiels, P
Xie, R
Trevisan, R.G
Eitelwein, M.T
Ferraz, M.N
Tavares, T.R
Molin, J.P
Neves, D.C
Kantipudi, K
Lai, C
Min, C
Chiang, R.C
de Souza, M.R
Bertani, T.D
Parraga, A
Bredemeier, C
Trentin, C
Doering, D
Susin, A
Negreiros, M
Lai, C
Min, C
Chiang, R
Hafferman, A
Morgan, S
KC, K
Hannah, L
Roehrdanz, P
Donatti, C
Fraser, E
Berg, A
Saenz, L
Wright, T.M
Hijmans, R.J
Mulligan, M
Laamrani, A
Berg, A
March, M
McLaren, A
Martin, R
Muller, O
Keller, B
Zimmermanm, L
Jedmowski, C
Pingle, V
Acebron, K
Zendonadi, N
Steier, A
Pieruschka, R
Schurr, U
Rascher, U
Kraska, T
Tucker, M.W
Virk, S
Harris, G
Lessl, J
Levi, M
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Ferreyra, R
Lehmann, J
Lowenberg-DeBoer, J
Da Silva, M.L
Alves de Lima, J.
Balbinot, A
Molin, J.P
Rehman, T
Rahman, M
Ayipio, E
Lukwesa, D
Zheng, J
Wells, D
Syed, H.H
Barai, K
Ewanik, C
Dhiman, V
Zhang, Y
Hodeghatta, U.R
Ferreyra, R
Lehmann, J
Wilson, J.A
Chamara, N
Ge, Y
Bai, F
Bhandari, M
Landivar, J
Ghansah, B
Zhao, L
Landivar, J
Pal, P
Balboa, G
Masnello, J.C
De Oliveira Moreira, F
Canal Filho, R
Da Silva, E.R
Molin, J.P
Topics
Precision Dairy and Livestock Management
Proximal Sensing in Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Information Management and Traceability
Spatial Variability in Crop, Soil and Natural Resources
Precision Horticulture
Sensor Application in Managing In-season Crop Variability
Precision Conservation
Precision Livestock Management
Profitability, Sustainability, and Adoption
Precision Carbon Management
Precision Horticulture
Modeling and Geo-statistics
Emerging Issues in Precision Agriculture (Energy, Biofuels, Climate Change, Standards)
Profitability, Sustainability and Adoption
Spatial Variability in Crop, Soil and Natural Resources
Unmanned Aerial Systems
Remote Sensing Applications in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Sensor Application in Managing In-season Crop Variability
Profitability and Success Stories in Precision Agriculture
Precision Crop Protection
Big Data, Data Mining and Deep Learning
Applications of Unmanned Aerial Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Geospatial Data
Site-Specific Nutrient, Lime and Seed Management
Education and Outreach in Precision Agriculture
Precision Agriculture and Global Food Security
Data Analytics for Production Ag
Artificial Intelligence (AI) in Agriculture
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Demonstration
Type
Poster
Oral
Year
2012
2010
2014
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results44 paper(s) found.

1. Developing An Active Crop Sensor-based In-season Nitrogen Management Strategy For Rice In Northeast China

  Crop sensor-based in-season N management strategies have been successfully developed and evaluated for winter wheat around the world, but little has been reported for rice. The objective of this study was to develop an active crop sensor-based in-season N management strategy for upland rice in Northeast... Y. Yao, Y. Miao, S. Huang, M.L. Gnyp, R. Jiang, X. Chen, G. Bareth

2. The Application Of Fertilizer Using Management Zone (MZ) In Pampas Soils With Texture Variability Affects Residual Nitrate After Harvest

          The maize yields are usually associated with soil texture heterogeneity in western Argentinean Pampas.  In this area, the uniform fertilizer management (UM) increased the risk of nitrate leaching due to over-fertilizing but it could be minimized by using different management zones criteria (MZ). In a field experiment, the nitrates distribution in soil depth (0-1.80 m) at sowing and harvest times (residual Nitrate) and the maize... M. Rodriguez, G. Civeira, S. Urricariet, P. Muschietti, R. Lavado

3. Monitoring Dairy Cow Activity With GPS-tracking And Supporting Technologies

  Nutrient loss from dairy farms is an issue of serious concern to most dairy farmers around the world. On grazed systems such as those practiced in New Zealand animal excreta has been identified as a major source of nutrient loss, which for nitrogen (N) relates to cattle urine in particular.  A study was commissioned to examine nutrient transfer around dairy farms associated with the cows with a view to developing improved precision nutrient application... I. Draganova, I.J. Yule, K. Betteridge, M.J. Hedley, K.J. Stafford

4. Variable-rate Irrigation Management For Peanut Using Irrigator Pro

  Variable-rate irrigation has the potential to save substantial water. These water savings will become more important as urban, industrial, and environmental sectors compete with agriculture for available water. However, methodologies to precision-apply water for maximum agronomic and economic utility are needed.  Information is needed to optimally management variable-rate irrigation systems. In this study, we conducted irrigation experiments on peanut to compare... K. Stone, P.J. Bauer, W.J. Busscher, J.A. Millen, D.E. Evans, E.E. Strickland

5. Development Of A Sensor Suite To Determine Plant Water Potential

The goal of this research was to develop a mobile sensor suite to determine plant water status in almonds and walnuts. The sensor suite consisted of an infrared thermometer to measure leaf temperature and additional sensors to measure relevant ambient conditions such as light intensity, air temperature, air humidity, and wind speed. In the Summer of 2009, the system was used to study the relationship between leaf temperature, plant water status, and relevant microclimatic information in an almond... V. Udompetaikul, S. Upadhyaya, B. Lampinen, D. Slaughter

6. C And N Coupling Through Time: Soil C, N, And Grain Yield In A Long-term Continuous Corn Trial

Gains and losses of both C and N are important in agricultural landscapes. Temporal changes in the pattern of crop yield response to tillage and fertilizer input are commonly observed; often weakly interpreted, in long-term research. A 38-year-long monoculture corn (Zea mays L.) tillage (moldboard plow, no-tillage) by N rate (0, 84, 168, 336 kg N per hectare) trial was sampled to a depth of 100 cm, as was the surrounding... J. Grove, E.M. Pena-yewtukhiw

7. Citrus Greening Disease Detection Using Airborne Multispectral And Hyperspectral Imaging

Citrus greening disease (Huanglongbing or HLB) has become a major catastrophic disease in Florida’s $9 billion citrus industry since 2005, and continued to be spread to other parts of the U.S. There is no known cure for this disease. As of October 2009, citrus trees in 2,702 different sections (square mile) in 34 counties were infected in Florida. A set of hyperspectral imageries were used to develop disease detection algorithms using image-derived spectral library, the mixture tuned... W. Lee, A. Kumar, R. Ehsani, C. Yang, L.G. Albrigo,

8. Crop Rotation Impacts ‘Temporal Sampling’ Needed For Landscape-defined Management Zones

Yield and landscape position are used to delineate management zones, but this approach is confounded by yield’s weather dependence, causing yield to evidence temporal variability/lack of yield stability. Management options (e.g. crop rotation) also influence yield stability. Our objective was to build a model that would describe the influence of crop rotation on the temporal yield stability of landscape defined management zones. Corn (Zea mays L.) yield data for two rotations,... E.M. Pena-yewtukhiw, J. Grove

9. Spatial Variability of Soil Properties in Intensively Managed Tropical Grassland in Brazil

For the intensification of tropical grass pastures systems the soil fertility building up by liming and balanced fertilization is necessary. The knowledge of spatial variability soil properties is useful in the rational use of inputs, as in the variable rate application of lime and fertilizers. PA requires methods to indicate the spatial variability of soil and plant parameters. The objective of this work was to map and evaluate the soil properties and maps the site specific liming and fertilizer... G.M. Bettiol, R.Y. Inamasu, L.M. Rabello, A.C. Bernardi, M. Campana, P.P. Oliveira

10. Use of Active Crop Canopy Reflectance Sensor for Nitrogen Sugarcane Fertilization

Researches about the use of ground-based canopy reflectance sensors aiming the nitrogen management fertilization on variable-rate over the sugarcane crop have been conducted in São Paulo, Brazil since 2007. Sugarcane response to nitrogen is variable, making difficult the development of models to estimate its demands.... L.R. Amaral, G. Portz, H. Rosa, J. Molin

11. Estimation of Rice Yield from MODIS Data in West Java, Indonesia

Chiharu Hongo1*, Takaaki Furukawa1, Gunardi Sigit2, Masayasu Maki3, Koki Honma3,... C. Hongo, T. Furukawa, G. Sigit, M. Maki, K. Honma, K. Yoshida, K. Oki, H. Shirakawa

12. Using Multiplex® to Manage Nitrogen Variability in Champagne Vineyard

... L. Marine, M. Manon, G. Claire, P. Laurent, F. Mostafa, C. Zoran, B. Naima, D. Sébastien, G. Olivier

13. Soil Resource Appraisal towards Land use Planning Using Satellite Remote Sensing and GIS – A Case Study in Medak Nala Watershed in Northern Karnataka, India

In precision farming, knowledge of spatial variability in soil properties is important. The soil map shows soil series and phases like stoniness, gravelliness, salinity, sodicity,... V.C. Patil, H.H. Gowda, K.A. Reddy, U.K. Shanwad

14. Estimating Crop Leaf Area Index from Remotely Sensed Data: Scale Effects and Scaling Methods

Leaf area index (LAI) of crop canopies is significant for growth condition monitoring and crop yield estimation, and estimating LAI based on remote sensing observations is the normal way to assess regional crop growth. However, the scale effects of LAI make multi-scale observations harder to be fully and effectively utilized for LAI estimation. A systematical statistical strategy... Y. Dong , J. Wang , C. Li , G. Yang, X. Song, W. Huang

15. Issues in Analysis of Soil-Landscape Effects in a Large Regional Yield Map Collection

     Yield maps are commonly collected by producers and precision-agriculture service providers and are accumulating in warehouse scale data-stores. A key goal in analysis of yield maps is to understand how climate interacts with soil landscapes to cause spatial and temporal variability in grain yield. However, there are many issues that limit utilization of yield map data for this purpose including: i) yield-landscape inversion between climate years,... N.R. Kitchen, K.A. Sudduth, D.B. Myers

16. Landscape Influences on Soil Nitrogen Supply and Water Holding Capacity for Irrigated Corn

... T. Shaver, M. Schmer, S. Irmak, S. Van donk, B. Wienhold, V. Jin, A. Bereuter, D. Francis, D. Rudnick, N. Ward, L. Hendrickson, R. Ferguson, V.I. Adamchuk

17. Use of Cluster Regression for Yield Prediction in Wine Grape

@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1;... L.E. Acosta, L.A. Jara, R.A. Ortega

18. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor

... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth

19. Building Proactive Predictive Models With Big Data Technology For Precision Agriculture

In a world with ever increasing shortages of food production due to increasing populations and depletion of resources, the need for new technologies and techniques for sustainable and efficient agriculture with long term financial, environmental and cultural benefits are critical.  An area of scientific study concerning crop-production management called Precision Agriculture (PA) is a concept based on integrating modern information technologies such as Big Data Analytics, GPS... C. Lai, C. Belsky

20. Factors Related To Adoption Of Precision Agriculture Technologies In Southern Brazil

The adoption of technologies which allow the increase of food production with improving quality in addition to reduce the foot prints in the environment is important for agribusiness development. Precision Agriculture (PA) stands out as an option to aid the achievement of these goals. Brazil plays an important role to supply agricultural products and to demand technologies. However, research has focused on technical and economic implementation of PA technologies. Therefore, more information... A.A. Anselmi, L.C. Federizzi , C. Bredemeier, J.P. Molin

21. Assessing Definition Of Management Zones Trough Yield Maps

Yield mapping is one of the core tools of precision agriculture, showing the result of combined growing factors. In a series of yield maps collected along seasons it is possible to observe not only the spatial distribution of the productivity but also its spatial consistency among different seasons. This work proposes the study of distinct methods to analyze yield stability in grain crops regarding its potential for defining management zones from a historical sequence of yield maps. Two methods... M.T. Eitelwein, J.P. Molin, M. Spekken, R.G. Trevisan

22. Plant Stand Count and Corn Crop Density Assessment Using Texture Analysis on Visible Imagery Collected Using Unmanned Aerial Vehicles

Ensuring successful corn farming requires an effective monitoring program to collect information about stand counts at an early stage of growth and plant damages due to natural calamities, farming equipment, hogs, deer and other animals. These monitoring programs not only provide a yield estimate but also help farmers and insurance companies in assessing the causes of damages. Current field-based assessment methods are labor intensive, costly, and provide very limited information. Manual assessment... S. Samiappan, B. Henry, R.J. Moorhead, M.W. Hock

23. Potential Improvement in Rice Nitrogen Status Monitoring Using Rapideye and Worldview-2 Satellite Remote Sensing

For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote sensing provides a promising technology for crop growth monitoring and precision management over large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been used to estimate rice N status. The objective of this study was to evaluate the potential of using high spatial resolution... S. Huang, Y. Miao, F. Yuan, M.L. Gnyp, Y. Yao, Q. Cao, V. Lenz-wiedemann, G. Bareth

24. Measuring Height of Sugarcane Plants Through LiDAR Technology

Sugarcane (Saccharum spp.) has an important economic role in Brazilian agriculture, especially in São Paulo State. Variation in the volume of plants can be an indicative of biomass which, for sugarcane, strongly relates to the yield. Laser sensors, like LiDAR (Light Detection and Ranging), has been employed to estimate yield for corn, wheat and monitoring forests. The main advantage of using this type of sensor is the capability of real-time data acquisition in a non-destructive way, previously... T.F. Canata, J.P. Molin, A.F. Colaço, R.G. Trevisan, P.R. Fiorio, M. Martello

25. Sources of Information to Delineate Management Zones for Cotton

Cotton in Brazil is an input-intensive crop. Due to its cultivation in large fields, the spatial variability takes an important role in the management actions. Yield maps are a prime information to guide site-specific practices including delineation of management zones (MZ), but its adoption still faces big challenges. Other information such as historical satellite imagery or soil electrical conductivity might help delineating MZ as well as predicting crop performance. The objective of this work... R.G. Trevisan, M.T. Eitelwein, A.F. Colaço, J.P. Molin

26. Prediction of Sugarcane Yields in Commercial Fields by Early Measurements with an Optical Crop Canopy Sensor

As a grass (Poaceae), sugarcane needs supplemental mineral nitrogen (N) to achieve high yields on commercial production areas. In Brazil, N recommendations for sugarcane ratoons are based on expected yield and the results of N response trials, as soil N analyses are not a suitable basis for decisions on optimum N fertilizer rates under tropical conditions. Since the vegetative parts in sugarcane are harvested, yield components such as the number of stalks and stalk height are directly correlated... G. Portz, J. Jasper, J.P. Molin

27. Evaluation of the Potential for Precision Agriculture and Soil Conservation at Farm and Watershed Scale: A Case Study

Precision agriculture and soil conservation have the potential to increase crop yield and economic return while reducing environmental impacts. Landform, spatial variability of soil processes, and temporal trends may affect crop N response and should be considered for precision agriculture. The objective of this research was to evaluate the viability of precision agriculture in improving N use efficiency and profitability at the farm and watershed level in western Canada. Two studies are described... M. Khakbazan, A. Moulin, J. Huang, P. Michiels, R. Xie

28. Optimum Spatial Resolution for Precision Weed Management

The occurrence and number of herbicide-resistant weeds in the world has increased in recent years. Controlling these weeds becomes more difficult and raises production costs. Precision spraying technologies have been developed to overcome this challenge. However, these systems still have relatively high acquisition cost, requiring studies of the relation between the spatial distribution of weeds and the economically optimum spatial resolution of the control method. In this context, the objective... R.G. Trevisan, M.T. Eitelwein, M.N. Ferraz, T.R. Tavares, J.P. Molin, D.C. Neves

29. Weed Detection Among Crops by Convolutional Neural Networks with Sliding Windows

One of the primary objectives in the field of precision agriculture is weed detection. Detecting and expunging weeds in the initial stages of crop growth with deep learning technique can minimize the usage of herbicides and maximize the crop yield for the farmers. This paper proposes a sliding window approach for the detection of weed regions using convolutional neural networks. The proposed approach involves two processes: (1) Image extraction and labelling, (2) building and training our neural... K. Kantipudi, C. Lai, C. Min, R.C. Chiang

30. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural Network

In this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros

31. Precision Agriculture Research Infrastructure for Sustainable Farming

Precision agriculture is an emerging area at the intersection of engineering and agriculture, with the goal of intelligently managing crops at a microscale to maximize yield while minimizing necessary resource. Achieving these goals requires sensors and systems with predictive models to constantly monitor crop and environment status. Large datasets from various sensors are critical in developing predictive models which can optimally manage necessary resources. Initial experiments at University... C. Lai, C. Min, R. Chiang, A. Hafferman, S. Morgan

32. Using Geospatial Data to Assess How Climate Change May Affect Land Suitability for Agriculture Production

Finding solutions to the challenge of sustainably feeding the world’s growing population is a pressing research need that cuts across many disciplines including using geospatial data. One possible area could be developing agricultural frontiers. Frontiers are defined as land that is currently not cultivated but that may become suitable for agriculture under climate change. Climate change may drive large-scale geographic shifts in agriculture, including expansion in cultivation at the thermal... K. Kc, L. Hannah, P. Roehrdanz, C. Donatti, E. Fraser, A. Berg, L. Saenz, T.M. Wright, R.J. Hijmans, M. Mulligan

33. Use of UAV Acquired Imagery As a Precision Agriculture Method for Measuring Crop Residue in Southwestern Ontario, Canada

Residue management on agriculture land is a practice of great importance in southwestern Ontario, where soil management practices have an important effect on Great Lakes water quality. The ability of tillage or planting system to maintain soil residue cover is currently measured by using one or more of the common methods, line transect (e.g. knotted rope, Meter stick) and photographic (grid, script, and image analysis) methods. Each of these techniques has various advantages and disadvantages;... A. Laamrani, A. Berg, M. March, A. Mclaren, R. Martin

34. Field Phenotyping and an Example of Proximal Sensing of Photosynthesis

Field phenotyping conceptually can be divided in five pillars 1) traits of interest 2) sensors to measure these traits 3) positioning systems to allow high throughput measurements by the sensors 4) experimental sites and 5) environmental monitoring. In this paper we will focus on photosynthesis as trait of interest, measured by remote active fluorescence. The sensor presented is the Light Induced Fluorescence Transient (LIFT) instrument. The LIFT instrument is integrated in three positioning systems.... O. Muller, B. Keller, L. Zimmermanm, C. Jedmowski, V. Pingle, K. Acebron, N. Zendonadi, A. Steier, R. Pieruschka, U. Schurr, U. Rascher, T. Kraska

35. Effectiveness of Different Precision Soil Sampling Strategies for Site-Specific Nutrient Management in Row-Crops

Soil sampling is an important component of site-specific nutrient management in precision agriculture. While precision soil sampling strategies such as grid or zone have been around for a while, the adoption and utilization of these strategies varies considerably among the growers, especially in the southeastern United States. The selection of an appropriate grid size or management zone further differ among the users depending on several factors. In order to better understand how some of the commonly... M.W. Tucker, S. Virk, G. Harris, J. Lessl, M. Levi

36. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito

37. The ISO Strategic Advisory Group for Smart Farming: a Multi-pronged Opportunity for Greater Global Interoperability

Agriculture is becoming increasingly complex and producers must secure their profitability, sustainability, and freedom to operate under a progressively more challenging set of constraints such as climate change, regulatory pressure, changes in consumer preferences, increasing cost of inputs, and commodity price volatility. We have not, however, yet reached the level of data interoperability required for a truly "smart" farming that can tackle the aforementioned problems... R. Ferreyra, J. Lehmann

38. Yield Analysis in Sugarcane Harvesters Using Design of Experiments (DoE) Methodology

The sugarcane crop is highlighted in national agribusiness, Brazil is the world’s largest producer of the plant, and the prospection of specialists is of strong growth for the next years. However, in order to increase productivity, technological interventions through of precision agriculture must be implemented. Among them, the management of inputs guided by yield spatial variability for otmizing production and income. This project approaches the implementation of the methodology of analysis... M.L. Da silva, J. . Alves de lima, A. Balbinot, J.P. Molin

39. A High-throughput Phenotyping System Evaluating Salt Stress Tolerance in Kale Plants Cultivated in Aquaponics Environments

Monitoring plant growth in a controlled environment is crucial to make informed decisions for various management practices such as fertilization, weed control, and harvesting. Agronomic, physiological, and architectural traits in kale plants (Brassica oleracea) are important to producers, breeders, and researchers for assessing the performance of the plants under biotic and abiotic stresses.  Traditionally, architectural, and morphological traits have been used to monitor plant growth. However,... T. Rehman, M. Rahman, E. Ayipio, D. Lukwesa, J. Zheng, D. Wells, H.H. Syed

40. Airborne Spectral Detection of Leaf Chlorophyll Concentration in Wild Blueberries

Leaf chlorophyll concentration (LCC) detection is crucial for monitoring crop physiological status, assessing the overall health of crops, and estimating their photosynthetic potential. Fast, non-destructive, and spatially extensive monitoring of LCC in crops is critical for accurately diagnosing and assessing crop health in large commercial fields. Advancements in hyperspectral remote sensing offer non-destructive and spatially extensive alternatives for monitoring plant parameters such as LCC.... K. Barai, C. Ewanik, V. Dhiman, Y. Zhang, U.R. Hodeghatta

41. Standards for Data-driven Agrifood Systems, One Year After the ISO Strategic Advisory Group for Smart Farming

The lack of data interoperability is a major obstacle for the data-driven, principled multi-objective decision-making required for modern agrifood systems to help meet the UN Sustainable Development Goals. Aware of this, the International Organization for Standardization (ISO) chartered a Strategic Advisory Group for Smart Farming (SAG-SF) to survey the existing standardization landscape of the domain within ISO, to identify gaps where additional standardization is needed, and to provide a strategic... R. Ferreyra, J. Lehmann, J.A. Wilson

42. Estimating Real-time Soil Water Content (SWC) in Corn and Soybean Fields Using Machine Learning Models, Proximal Remote Sensing, and Weather Data

Soil Water Content (SWC) is crucial for precise irrigation management, especially in center-pivot systems. Real-time estimation of SWC is vital for scheduling irrigation to prevent overwatering or underwatering. Proper irrigation yields benefits such as improved water efficiency, enhanced crop yield and quality, minimized environmental impact, optimized labor and energy costs, and improved soil health. Various in-situ techniques, such as Time-domain reflectometry (TDR), frequency-domain... N. Chamara, Y. Ge, F. Bai

43. Cotton Yield Estimation Using High-resolution Satellite Imagery Obtained from Planet SkySat

Satellite images have been used to monitor and estimate crop yield. Over the years, significant improvements on spatial resolution have been made where ortho images can be generated at 30-centimeter resolution. In this study, we wanted to explore the potential use of Planet SKYSAT satellite system for cotton yield predictions. This system provided imagery data at 50 centimeters resolution, and we collected data 14 times during the season. The data were collected from two different cotton... M. Bhandari

44. Sugarcane Yield Mapping Using an On-board Volumetric Sensor

Few alternatives are available to the sugarcane sector for monitoring crop productivity. However, in recent years, research has been dedicated to developing methods ranging from estimation based on engine parameters to using sensors and artificial intelligence. This study aims to present a new tool for monitoring productivity applied to sugarcane cultivation, which utilizes a volumetric optical sensor, in contrast to other methods already used for this measurement, and is recently being introduced... G. Balboa, J.C. Masnello, F. De oliveira moreira, R. Canal filho, E.R. Da silva, J.P. Molin