Proceedings

Find matching any: Reset
Phillips, S.B
Stuckey, E.G
Squires, T
Oliveira, L.P
Isenhart, T.M
Andvaag, E
Pflanz, M
Thornton, M
Piepho, H
Veiga, J.P
Lapen, D
R. D. Pereira, R
Zhang, J
Buelvas, R
Miao, Y
Brown, P
Melchiori, R.J
Dota, M.A
Vetch, J.M
Goffart, J
Add filter to result:
Authors
Betz, A
Benny, H
Jens, M
Özyurtlu, M
Pflanz, M
Rachow-Autrum, T
Schischmanow, A
Scheele, M
Schrenk, J
Schrenk, L
Zude, M
Gebbers, R
Goffart, J
Ben Abdallah, F
Zhao, G
Miao, Y
Zhang, F
Fan, M
Miao, Y
Li, F
M. Rabello, L
R. D. Pereira, R
C. Lopes, W
Y. Inamasu, R
V. de Sousa, R
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Khosla, R
Jiang, R
Bareth, G
Cao, Q
Miao, Y
Feng, G
Gao, X
Liu, B
Khosla, R
Liu, B
Miao, Y
Feng, G
Yue, S
Li, F
Gao, X
Miao, Y
Cao, Q
Cui, Z
Li, F
Dao, T.H
Khosla, R
Chen, X
Yao, Y
Miao, Y
Huang, S
Gnyp, M.L
Jiang, R
Chen, X
Bareth, G
Goffart, J
Leonard, A
Buffet, D
Defourny, P
Van Den Wyngaert, L
Tomer, M
Isenhart, T.M
James, D.E
Phillips, S.B
Santos, C
Weschter, E.O
Dota, M.A
Cugnasca, C.E
Cao, Q
Miao, Y
Feng, G
Li, F
Liu, B
Gao, X
Liu, Y
Veiga, J.P
Cavalcante, D.S
Molin, J.P
Cao, Q
Miao, Y
Shen, J
Cheng, S
Khosla, R
Liu, F
Yu, W
Miao, Y
Hu, S
Shen, J
Wang, H
Kemerer, A.C
Albarenque, S.M
Melchiori, R.J
Destain, M
Leemans, V
Marlier, G
Goffart, J
Bodson, B
Mercatoris, B
Gritten, F
Huang, S
Miao, Y
Yuan, F
Gnyp, M.L
Yao, Y
Cao, Q
Lenz-Wiedemann, V
Bareth, G
Lu, J
Miao, Y
Huang, Y
Shi, W
Delauré, B
Baeck, P
Blommaert, J
Delalieux, S
Livens, S
Sima, A
Boonen, M
Goffart, J
Jacquemin, G
Nuyttens, D
Maja, J.M
Blocker, A.K
Stuckey, E.G
Sell, S.G
Tuttle, G
Mueller, J
Andrae, J
Lu, J
Wang, H
Miao, Y
Wang, X
Miao, Y
Batchelor, W.D
Dong, R
Mulla, D.J
Wang, X
Miao, Y
Xia, T
Dong, R
Mi, G
Mulla, D.J
Kross, A
Kaur, G
Callegari, D
Lapen, D
Sunohara, M
McNairn, H
Rudy, H
van Vliet, L
Kross, A
Kaur, G
Znoj, E
Callegari, D
Sunohara, M
McNairn, H
Lapen, D
Rudy, H
van Vliet, L
Leksono, E
Adamchuk, V
Whalen, J
Buelvas, R
Sela, S
Graff, N
Mizuta, K
Miao, Y
Krys, K
Shirtliffe, S
Duddu, H
Ha, T
Attanayake, A
Johnson, E
Andvaag, E
Stavness, I
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Mizuta, K
Miao, Y
Morales, A.C
Lacerda, L.N
Cammarano, D
Nielsen, R.L
Gunzenhauser, R
Kuehner, K
Wakahara, S
Coulter, J.A
Mulla, D.J
Quinn, D.
McArtor, B
Lacerda, L.N
Miao, Y
Mizuta, K
Stueve, K
Wakahara, S
Miao, Y
Gupta, S
Rosen, C
Mizuta, K
Zhang, J
Li, D
Dong, R
Miao, Y
Wang, X
Oliveira, L.P
Ortiz, B.V
Morata, G.T
Squires, T
Jones, J
Elvir Flores, A
Miao, Y
Sharma, V
Lacerda, L
Samborski, S.M
Szatylowicz, J
Gnatowski, T
Leszczyńska, R
Thornton, M
Walsh, O
Vetch, J.M
Lu, J
Chen, Z
Miao, Y
Li, Y
Zhang, Y
Zhao, X
Jia, M
Chen, X
Miao, Y
Yu, K
chang, Q
li, F
Miao, Y
liu, X
Tian, Y
Zhu, Y
Cao, W
Cao, Q
Chen, X
Li, Y
Matavel, C
Meyer-Aurich, A
Piepho, H
Chakraborty, M
Pourreza, A
Brown, P
Wakahara, S
Miao, Y
Gupta, S
Rosen, C
Negrini, R.P
Miao, Y
Mizuta, K
Stueve, K
Kaiser, D
Coulter, J.A
Morales, A.C
Quinn, D.
Mizuta, K
Miao, Y
Lacerda, L
Miao, Y
Sharma, V
E. Flores, A
Kechchour, A
Lu, J
Zhen, X
Miao, Y
Feng, G
Huang, Y
Yang, Z
Liu, P
Bindish, R
Miao, Y
Kechchour, A
Sharma, V
Flores, A
Lacerda, L
Mizuta, K
Lu, J
Huang, Y
Miao, Y
Kechchour, A
Folle, S
Mizuta, K
Mizuta, K
Miao, Y
Lu, J
Negrini, R.P
Lu, J
Miao, Y
Ransom, C.J
Fernández, F
Zhang, Y
Bailey, J
Balmos, A
Castiblanco Rubio, F.A
Krogmeier, J
Buckmaster, D
Love, D
Zhang, J
Allen, M
Topics
Precision Horticulture
Sensor Application in Managing In-season Crop Variability
Food Security and Precision Agriculture
Precision Nutrient Management
Engineering Technologies and Advances
Proximal Sensing in Precision Agriculture
Precision Nutrient Management
Sensor Application in Managing In-season Crop Variability
Pros and Cons of Reflectance and Fluorescence-based Remote Sensing of Crop
Precision Conservation
Precision A-Z for Practitioners
Emerging Issues in Precision Agriculture (Energy, Biofuels, Climate Change, Standards)
Precision Nutrient Management
Proximal Sensing in Precision Agriculture
Sensor Application in Managing In-season CropVariability
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Proximal Sensing in Precision Agriculture
Remote Sensing Applications in Precision Agriculture
Unmanned Aerial Systems
Farm Animals Health and Welfare Monitoring
Precision Agriculture and Global Food Security
Decision Support Systems
In-Season Nitrogen Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Site-Specific Nutrient, Lime and Seed Management
Applications of Unmanned Aerial Systems
ISPA Community: Nitrogen
In-Season Nitrogen Management
Big Data, Data Mining and Deep Learning
On Farm Experimentation with Site-Specific Technologies
Drainage Optimization and Variable Rate Irrigation
In-Season Nitrogen Management
On Farm Experimentation with Site-Specific Technologies
Site-Specific Nutrient, Lime and Seed Management
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Weather and Models for Precision Agriculture
Edge Computing and Cloud Solutions
Type
Poster
Oral
Year
2012
2010
2014
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results56 paper(s) found.

1. Quantifying Spatial Variability Of Indigenous Nitrogen Supply For Precision Nitrogen Management In North China Plain

... Y. Miao, Q. Cao, Z. Cui, F. Li, T.H. Dao, R. Khosla, X. Chen

2. Developing An Active Crop Sensor-based In-season Nitrogen Management Strategy For Rice In Northeast China

  Crop sensor-based in-season N management strategies have been successfully developed and evaluated for winter wheat around the world, but little has been reported for rice. The objective of this study was to develop an active crop sensor-based in-season N management strategy for upland rice in Northeast... Y. Yao, Y. Miao, S. Huang, M.L. Gnyp, R. Jiang, X. Chen, G. Bareth

3. SPOT5 Multispectral Data Potentialities To Monitor Potato Crop Nitrogen Status At Specific Field Scale

The many challenges facing European agriculture and farm of tomorrow are such that they increasingly require the setting up of Decision Support Systems (DSS) that favour integrated crop management at farm or regional level. A valuable DSS for management of split fertilizer N applications was developed in Belgium for potato crop. It combines total N recommendation based on field predictive balance-sheet method along with Crop Nitrogen Status (CNS) monitoring through hand-held chlorophyll meter... J. Goffart, A. Leonard, D. Buffet, P. Defourny, L. Van den wyngaert

4. Extending The Concept Of Precision Conservation To Restoration Of Rivers And Streams

Comprehensive water quality management in watersheds involves management of upland and riparian environments. Efforts to optimize environmental performance of agriculture through field-scale precision conservation should be complemented with riparian restorations to enhance capacities to assimilate... M. Tomer, T.M. Isenhart, D.E. James

5. Optical Sensor Advancements In Latin America

Placeholder... S.B. Phillips

6. OptiThin - Precision Fruiticulture by Tree-Specific Mechanical Thinning

Apple cultivars show biennial fluctuations in yields (alternate bearing). The phenomenon is induced by reduced yields in one year due to freeze damage, low pollination rate or other reasons. Consequently, trees develop many flower buds that blossom in the following year. The many flowers lead to a high number of small fruits that won’t be accepted on the market. Endogenous factors (phytohormones and carbohydrate allocation) subsequently establish the biennial cycle. The alternate bearing... A. Betz, H. Benny, M. Jens, M. Özyurtlu, M. Pflanz, T. Rachow-autrum, A. Schischmanow, M. Scheele, J. Schrenk, L. Schrenk, M. Zude, R. Gebbers

7. Potential Indicators Based On Leaf Flavonoids Content for the Evaluation of Potato Crop Nitrogen Status

Nitrogen (N) fertilization strategies aim to limit environmental pollution by improving potato crop N use efficiency. Such strategies may use indicators for the assessment of in season crop N status (CNS). Leaf polyphenolics (flavonoids) content appears as a valuable indicator of CNS. Because of their absorption features in... J. Goffart, F. Ben abdallah

8. Developing an Integrated Rice Management System for Improved Yield and Nitrogen Use Efficiency in Northeast China

... G. Zhao, Y. Miao, F. Zhang, M. Fan

9. Deriving Nitrogen Indicators of Maize Using the Canopy Chlorophyll Content Index

Many spectral indices have been proposed to derive aerial nitrogen (N) status parameters of crops in recent decades. However, most of red light based spectral indices easily loss sensitivity at moderate-high aboveground biomass. The objective of present study is to assess the performance of red edge based... Y. Miao, F. Li

10. Implementation of a Controller Unit Based on the ISO 11783 Standard for Automatic Measurement of the Electrical Conductivity of the Soil

... L. M. rabello, R. R. d. pereira, W. C. lopes, R. Y. inamasu, R. V. de sousa

11. In-season Diagnosis of Rice Nitrogen Status Using an Active Canopy Sensor

... Y. Yao, Y. Miao, S. Huang, M. Gnyp, R. Khosla, R. Jiang, G. Bareth

12. Performance of Two Active Canopy Sensors for Estimating Winter Wheat Nitrogen Status in North China Plain

... Q. Cao, Y. Miao, G. Feng, X. Gao, B. Liu, R. Khosla

13. Different Leaf Sensing Approaches for the Estimation of Winter Wheat Nitrogen Status

Nondestructive real time diagnosis of crop N status is crucial to the development of precision nitrogen (N) management strategies. Chlorophyll meter has been a popular sensor for such purposes and different approaches to use this sensor has been developed using a threshold value, nitrogen sufficiency index (NSI) or ratio of... B. Liu, Y. Miao, G. Feng, S. Yue, F. Li, X. Gao

14. Radio Frequency Identification For Implementing Traceability In The Cotton Production In The Brazilian Midwest

According to the International Cotton Advisory Committee - ICAC projection for the fiber in cotton production for the crop year 2012/2013 is expected to reach an amount of 15.19 million tons , according to a forecast released in August 2012 . In the Brazilian context , according to the Ministry of Agriculture, Livestock and Supply of Brazil cotton cultivation in Brazil has grown especially in the Midwest . In particular , exports of cotton fiber increased twice in one season in 2003/2004... C. Santos, E.O. Weschter, M.A. Dota, C.E. Cugnasca

15. Evaluating Different Nitrogen Management Strategies For The Intensive Wheat-Maize System In North China Plain

The sustainable agricultural development involves both environmental challenges and production goals to meet growing food demand. However, excessive nitrogen (N) applications are threatening the sustainability of intensive agriculture in the North China Plain (NCP). Improved N management should result in greater N use efficiency (NUE) and producer profit while reducing the risk of environmental contamination. Therefore, developing and disseminating feasible N management strategies... Q. Cao, Y. Miao, G. Feng, F. Li, B. Liu, X. Gao, Y. Liu

16. Measuring And Mapping Sugarcane Gaps

Sugarcane is an important crop in tropical regions of the world and especially for Brazil, the largest sugar supplier in the market, also running a domestic fleet of flex-fuel driven vehicles based on ethanol. Site specific production management can impact sugarcane production by increasing yield and reducing cost. Sugarcane fields are planted each five years, in average, and an important parameter that is measured after the planting operation is the gaps caused by problems during planting... J.P. Veiga, D.S. Cavalcante, J.P. Molin

17. Crop Circle Sensor-Based Precision Nitrogen Management Strategy For Rice In Northeast China

GreenSeeker (GS) sensor-based precision N management strategy for rice has been developed, significantly improved N fertilizer use efficiency. Crop Circle ACS-470 (CC) active sensor is a new user configurable sensor, with a choice of 6 possible bands. The objectives of this study were to identify important vegetation indices obtained from CC sensor for estimating rice yield potential and rice responsiveness to topdressing N application and evaluate their potential improvements over GS normalized... Q. Cao, Y. Miao, J. Shen, S. Cheng, R. Khosla, F. Liu

18. Evaluating Leaf Fluorescence Sensor Dualex 4 For Estimating Rice Nitrogen Status In Northeast China

Real-time non-destructive diagnosis of crop nitrogen (N) status is crucially important for the success of in-season site-specific N management. Chlorophyll meter (CM) has been commonly used to non-destructively estimate crop leaf chlorophyll concentration, and indirectly estimate crop N status. Dualex 4 is a newly developed leaf fluorescence sensor that can estimate both leaf chlorophyll concentration and polyphenolics, especially flavonoids. When N is deficient, N stress can induce... W. Yu, Y. Miao, S. Hu, J. Shen, H. Wang

19. Unmanned Aerial System To Determine Nitrogen Status In Maize

Maize field production shows spatial variability during vegetative crop growth that could be used to prescribe nitrogen variable rates. The use of portable sensors mounted on high-clearance applicators is well documented, however new UAS vehicle equipped with high resolution digital cameras could be used to determine crop spatial variability with the advantage of survey extensive field areas. To our knowledge, comparisons between vegetation indices obtained by a modified digital camera and... A.C. Kemerer, S.M. Albarenque, R.J. Melchiori

20. Detection of Nitrogen Stress on Winter Wheat by Multispectral Machine Vision

Hand-held sensors (SPAD meter, N-Tester, …) used for detecting the leaves nitrogen  concentration (Nc) present several drawbacks. The nitrogen concentration is gained by an indirect way through the chlorophyll concentration and the leaves have to be fixed in a defined position for the measurements. These drawbacks could be overcome by an imaging device that measures the canopy reflectance. Hence, the objective of the paper is to analyse the potential of multispectral imaging for detecting... M. Destain, V. Leemans, G. Marlier, J. Goffart, B. Bodson, B. Mercatoris, F. Gritten

21. Potential Improvement in Rice Nitrogen Status Monitoring Using Rapideye and Worldview-2 Satellite Remote Sensing

For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote sensing provides a promising technology for crop growth monitoring and precision management over large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been used to estimate rice N status. The objective of this study was to evaluate the potential of using high spatial resolution... S. Huang, Y. Miao, F. Yuan, M.L. Gnyp, Y. Yao, Q. Cao, V. Lenz-wiedemann, G. Bareth

22. In-season Diagnosis of Rice Nitrogen Status Using Crop Circle Active Canopy Sensor and UAV Remote Sensing

Active crop canopy sensors have been used to non-destructively estimate nitrogen (N) nutrition index (NNI) for in-season site-specific N management. However, it is time-consuming and challenging to carry the hand-held active crop sensors and walk across large paddy fields. Unmanned aerial vehicle (UAV)-based remote sensing is a promising approach to overcoming the limitations of proximal sensing. The objective of this study was to combine unmanned aerial vehicle (UAV)-based remote sensing system... J. Lu, Y. Miao, Y. Huang, W. Shi

23. High Resolution Vegetation Mapping with a Novel Compact Hyperspectral Camera System

The COSI-system is a novel compact hyperspectral imaging solution designed for small remotely piloted aircraft systems (RPAS). It is designed to supply accurate action and information maps related to the crop status and health for precision agricultural applications. The COSI-Cam makes use of a thin film hyperspectral filter technology which is deposited onto an image sensor chip resulting in a compact and lightweight instrument design. This paper reports on the agricultural monitoring... B. Delauré, P. Baeck, J. Blommaert, S. Delalieux, S. Livens, A. Sima, M. Boonen, J. Goffart, G. Jacquemin, D. Nuyttens

24. Development of a Small Tracking Device for Cattle Using IoT Technology

The US is the largest producer of beef in the world. Last year alone, it produces nearly 19% of the world’s beef.  This translate to about almost $90 billion in economic impact in the country. Aside from being a producer, the US also consumed more than 26 billion pounds of beef which have a retail value of the entire beef industry to more than $74B. For this level of production and consumption, each rancher in the US must produce a herd size of at least 100 or more to sustain the current... J.M. Maja, A.K. Blocker, E.G. Stuckey, S.G. Sell, G. Tuttle, J. Mueller, J. Andrae

25. Active Canopy Sensor-Based Precision Rice Management Strategy for Improving Grain Yield, Nitrogen and Water Use

The objective of this research was to develop an active crop sensor-based precision rice (Oryza sativa L.) management (PRM) strategy to improve rice yield, N and water use efficiencies and evaluate it against farmer’s rice management in Northeast China. Two field experiments were conducted from 2011 to 2013 in Jiansanjiang, Heilongjiang Province, China, involving four treatments and two varieties (Kongyu 131 and Longjing 21). The results indicated that PRM system significantly increased... J. Lu, H. Wang, Y. Miao

26. Improving the Precision of Maize Nitrogen Management Using Crop Growth Model in Northeast China

The objective of this project was to evaluate the ability of the CERES-Maize crop growth model to simulate grain yield response to plant density and N rate for two soil types in Northeast China, with the long-term goal of using the model to identify the optimum plant density and N fertilizer rate forspecific site-years. Nitrogen experiments with six N rates, three plant densities and two soil types were conducted from 2015 to 2017 in Lishu county, Jilin Province in Northeast China. The CERES-Maize... X. Wang, Y. Miao, W.D. Batchelor, R. Dong, D.J. Mulla

27. Improving Active Canopy Sensor-Based In-Season N Recommendation Using Plant Height Information for Rain-Fed Maize in Northeast China

The inefficient utilization of nitrogen (N) fertilizer due to leaching, volatilization and denitrification has resulted in environmental pollution in rain-fed maize production in Northeast China. Active canopy sensor-based in-season N application has been proven effective to meet maize N requirement in space and time. The objective of this research was to evaluate the feasibility of using active canopy sensor for guiding in in-season N fertilizer recommendation for rain-fed maize in Northeast... X. Wang, Y. Miao, T. Xia, R. Dong, G. Mi, D.J. Mulla

28. Spatial Decision Support System: Controlled Tile Drainage – Calculate Your Benefits

Climate projection studies suggest that extreme heat waves and floods will become more frequent, affecting future crop yields by 20%-30%, globally. Managing vulnerability and risk begins at the farm level where best management practices can reduce the impacts associated with extreme weather events. A practice that can assist in mitigating the impact of some extreme events is controlled tile drainage (CTD). With CTD, producers use water flow control structures to manage the drainage of water from... A. Kross, G. Kaur, D. Callegari, D. Lapen, M. Sunohara, H. Mcnairn, H. Rudy, L. Van vliet

29. Evaluation of an Artificial Neural Network Approach for Prediction of Corn and Soybean Yield

The ability to predict crop yield during the growing season is important for crop income, insurance projections and for evaluating food security. Yet, modeling crop yield is challenging because of the complexity of the relationships between crop growth and the interrelated predictor variables. Artificial neural networks (ANNs) are useful for such complex systems as they can capture non-linear relationships of data without explicitly knowing the underlying processes. In this study, an ANN-based... A. Kross, G. Kaur, E. Znoj, D. Callegari, M. Sunohara, H. Mcnairn, D. Lapen, H. Rudy, L. Van vliet

30. Development of a Manual Soil Sensing System for Measuring Multiple Chemical Soil Properties in the Field

Variable Rate Fertilizer Application (VRA) requires the input of soil chemical data. One of the preferred methods for analyzing soil chemical properties in the field is by using Ion Selective Electrodes (ISEs). To accommodate portability in soil measurements, a manual soil sampling system was developed. Nitrate, Phosphate and pH ISEs were integrated to provide a general outlook on the condition of essential soil nutrients. These ISEs were placed on a modified hand-held soil sampler equipped... E. Leksono, V. Adamchuk, J. Whalen, R. Buelvas

31. Spatially Explicit Prediction of Soil Nutrients and Characteristics in Corn Fields Using Soil Electrical Conductivity Data and Terrain Attributes

Site specific nutrient management (SSNM) in corn production environments can increase nutrient use efficiency and reduce gaseous and leaching losses. To implement SSNM plans, farmers need methods to monitor and map the spatial and temporal trends of soil nutrients. High resolution electrical conductivity (EC) mapping is becoming more available and affordable. The hypothesis for this study is that EC of the soil, in conjunction with detailed terrain attributes, can be used to map soil nutrients... S. Sela, N. Graff, K. Mizuta, Y. Miao

32. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover Analysis

Manual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the University... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness

33. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

34. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

35. Identifying Key Factors Influencing Yield Spatial Pattern and Temporal Stability for Management Zone Delineation

Management zone delineation is a practical strategy for site-specific management. Numerous approaches have been used to identify these homogenous areas in the field, including approaches using multiple years of historical yield maps. However, there are still knowledge gaps in identifying variables influencing spatial and temporal variability of crop yield that should be used for management zone delineation. The objective of this study is to identify key soil and landscape properties affecting... L.N. Lacerda, Y. Miao, K. Mizuta, K. Stueve

36. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

37. In-season Nitrogen Management of Maize Based on Nitrogen Status and Lodging Risk Prediction

Development of effective precision nitrogen (N) management strategies is crucially important for food security and sustainable development. Lodging is one of the major constraints to increasing maize yield that can be induced by strong winds, and is also influenced by management practices, like N rate. When making in-season N application decisions, lodging risk should be considered to avoid yield loss. Little has been reported on in-season N management strategies that also incorporate lodging... R. Dong, Y. Miao, X. Wang

38. Is Row-unit Vibration Affected by Planter Speeds and Downforce?

Row-unit vibration is an issue created mainly by planter`s opening disks and gauge-wheels contact with the ground. Variability on row-unit vibration could interfere on seed metering and delivery process, affecting crop emergence and final stand. With the amount of embedded technology present on planters, producers are being encouraged to increase planting speeds, which is also one of the main factors for row-unit vibration increasement. In this way, knowing the proper speeds, and using other instruments... L.P. Oliveira, B.V. Ortiz, G.T. Morata, T. Squires, J. Jones

39. Evaluating the Potential of Integrated Precision Irrigation and Nitrogen Management for Corn in Minnesota

The environmental impact of irrigated agriculture on ground and surface water resources in Minnesota is of major concern. Previous studies have focused on either precision irrigation or precision nitrogen (N) management, with very limited studies on the integrated precision management of irrigation and N fertilizers, especially in Minnesota. The Dualex Scientific sensor is a leaf fluorescence sensor that has been used to diagnose crop N... A. Elvir flores, Y. Miao, V. Sharma, L. Lacerda

40. Use of Remotely Measured Potato Canopy Characteristics As Indirect Yield Estimators

Prediction of potato yield before harvest is important for making agronomic and marketing decisions. Active optical sensors (AOS) are rarely used together with other hand-held instruments for monitoring potato growth, including yield prediction. The aim of the research was to determine the relationship between manually and remotely measured potato crop characteristics throughout the growing season and yield in commercial potato fields. Objective was also to identify crop characteristics that most... S.M. Samborski, J. Szatylowicz, T. Gnatowski, R. Leszczyńska, M. Thornton, O. Walsh

41. Multispectral Assessment of Chickpea in the Northern Great Plains

Chickpea is an increasingly important crop in the Montana agricultural system. From 2017 to 2021 the U.S. has planted an average of about 492,000 acres per year with Montana chickpea production accounting for around 44% of the U.S. total (USDA/NASS QuickStats accessed on 2/11/2021). This has led to an increase in breeding efforts for elite varieties adapted to the unique conditions in the Northern Great Plains. Breeding of chickpea often relies on traditional phenotyping techniques that are laborious,... J.M. Vetch

42. In-season Diagnosis of Winter Wheat Nitrogen Status Based on Rapidscan Sensor Using Machine Learning Coupled with Weather Data

Nitrogen nutrient index (NNI) is widely used as a good indicator to evaluate the N status of crops in precision farming. However, interannual variation in weather may affect vegetation indices from sensors used to estimate NNI and reduce the accuracy of N diagnostic models. Machine learning has been applied to precision N management with unique advantages in various variables analysis and processing. The objective of this study is to improve the N status diagnostic model for winter wheat by combining... J. Lu, Z. Chen, Y. Miao, Y. Li, Y. Zhang, X. Zhao, M. Jia

43. Improving Winter Wheat Nitrogen Status Monitoring Using Proximal Canopy Sensing and Agrometeorological Information with Machine Learning

Timely and accurate diagnosis of winter wheat nitrogen (N) status plays an important role in guiding precision N management. This study aims to combine proximal canopy sensing and agrometeorological information to establish a reliable winter wheat plant N concentration (PNC) monitoring model with seven machine learning (ML) algorithms (Random Forest Regression (RFR), Support Vector Regression (SVR), K-Nearest Neighbors Regression (KNNR), Partial Least Squares Regression (PLSR), Gradient Boosting... X. Chen, Y. Miao, K. Yu, Q. Chang, F. Li

44. Developing a Wheat Precision Nitrogen Management Strategy by Combining Satellite Remote Sensing Data and WheatGrow Model

Precision nitrogen (N) management (PNM) is becoming increasingly popular due to its ability to synchronize crop N demand with soil N supply spatiotemporally. The previous evidence has demonstrated that variable rate fertilization contributes to achieving high yields and high efficiencies. However, PNM at the regional level remains unclear and challenging. This study aims to develop a novel management zone (MZ)-based PNM strategy (MZ-PNM) to optimize the basal and topdressing N rates at the regional... Y. Miao, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, X. Chen, Y. Li

45. Optimizing Experimental Design for Determining Economic Nitrogen Levels: Insights on the Use of Monte Carlo Simulations

The determination of economic nitrogen levels is a pivotal element in the quest for sustainable agricultural practices. Designing experiments to accurately identify these levels, especially in contexts constrained by limited plot availability, poses a significant challenge. In response to these challenges, this study endeavors to demonstrate  an approach to optimize the experimental design for identifying economic nitrogen levels, even under such constraints. We employed statistical... C. Matavel, A. Meyer-aurich, H. Piepho

46. Retrieving Nitrogen Levels in Almond Trees Using Hyperspectral Data at Leaf and Canopy Level

Almonds are a crucial specialty crop in California, dominating approximately 80 percent of the global almond supply. To enhance nitrogen usage efficiency, reduce groundwater contamination, and optimize resource allocation, ongoing research has been dedicated to improving nitrogen management practices in almond cultivation. This study specifically focused on the retrieval of nitrogen levels with uncertainty estimation at both the leaf and canopy levels of almond trees. Hyperspectral data was collected... M. Chakraborty, A. Pourreza

47. Evaluating Different Strategies for In-season Potato Nitrogen Status Diagnosis Using Two Leaf Sensors

Accurate and efficient in-season diagnosis of potato nitrogen (N) status is key to the success of in-season N management for improved profitability and environmental protection. Sensor-based approaches will support more timely decision making compared to plant tissue-based approaches. SPAD-502 (SPAD; Konica Minolta, Tokyo, Japan) is a commonly used sensor for potato N status diagnosis. Dualex Scientific+ (Dualex; METOS® by Pessl Instruments, Weiz, Austria) is a new leaf chlorophyll... S. Wakahara, Y. Miao, S. Gupta, C. Rosen

48. Within-field Spatial Variability in Optimal Sulfur Rates for Corn in Minnesota: Implications for Precision Sulfur Management

The ongoing decline in sulfur (S) atmospheric depositions and high yield crop production have resulted in S deficiency and the need for S fertilizer applications in corn cropping systems. Many farmers are applying S fertilizers uniformly across their fields. Little has been reported on the within-field spatial variability in optimal S rates and the potential benefits of variable rate S applications. The objectives of this study were to 1) assess within-field variability of optimal S rates (OSR),... R.P. Negrini, Y. Miao, K. Mizuta, K. Stueve, D. Kaiser, J.A. Coulter

49. Effects of Crop Rotation on In-season Estimation of Optimal Nitrogen Rates for Corn Based on Proximal and Remote Sensing Data

A remote sensing and calibration strip-based precision nitrogen (N) management (RS-CS-PNM) strategy has been developed by the Precision Agriculture Center at the University of Minnesota to provide in-season N recommendation rates based on satellite imagery. This strategy involves the application of multiple N rates before planting and the identification of the agronomic optimum N rate (AONR) at V7-V8 growth stages using normalized difference vegetation index (NDVI) calculated using satellite imagery.... A.C. Morales, D. . Quinn, K. Mizuta, Y. Miao

50. Estimating Water and Nitrogen Deficiency in Corn Using a Multi-parameter Proximal Sensor

The Crop Circle Phenom (CCP) is an innovative integrated proximal sensor that can be potentially used to perform in-season diagnosis of nitrogen and water status. In addition to measuring spectral reflectance in several bands including the red, red edge, and near-infrared wavelengths, the CCP can also measure canopy and air temperatures and provides several parameters that can be associated with chlorophyll content, crop vigor, and water status. These capabilities differentiate the CCP from other... L. Lacerda, Y. Miao, V. Sharma, A. E. flores, A. Kechchour, J. Lu

51. Evaluating the Potential of In-season Spatial Prediction of Corn Yield and Responses to Nitrogen by Combining Crop Growth Modeling, Satellite Remote Sensing and Machine Learning

Nitrogen (N) is a critical yield-limiting factor for corn (Zea mays L.). However, over-application of N fertilizers is a common problem in the US Midwest, leading to many environmental problems. It is crucial to develop efficient precision N management (PNM) strategies to improve corn N management. Different PNM strategies have been developed using proximal and remote sensing, crop growth modeling and machine learning. These strategies have both advantages and disadvantages. There is... X. Zhen, Y. Miao, K. Mizuta, S. Folle, J. Lu, R.P. Negrini, G. Feng, Y. Huang

52. In-season Diagnosis of Corn Nitrogen and Water Status Using UAV Multispectral and Thermal Remote Sensing

For irrigated corn fields, how to optimize nitrogen (N) and irrigation simultaneously is a great challenge. A promising strategy is to use remote sensing to diagnose corn N and water status during the growing season, which can then be used to guide in-season variable rate N application and irrigation management. The objective of this study was to evaluate the effectiveness of UAV multispectral and thermal remote sensing in simultaneous diagnosis of corn N and water status. Two field experiments... Y. Miao, A. Kechchour, V. Sharma, A. Flores, L. Lacerda, K. Mizuta, J. Lu, Y. Huang

53. On-farm Evaluation of the Potential Benefits of Variable Rate Seeding for Corn in Minnesota

Many farmers in Minnesota are interested in adopting variable rate seeding technology for corn, however, little has been reported about their potential benefits. The objectives of this study were to 1) determine within-field variability of optimal seeding rates, and 2) evaluate the potential benefits of variable rate seeding in commercial corn fields in Minnesota. Four on-farm variable rate seeding trials were conducted in Minnesota in 2022 and 2023, with seeding rates ranging from 31,000 to 41,000... Y. Miao, A. Kechchour, S. Folle, K. Mizuta

54. Evaluating Different Strategies to Analyze On-farm Precision Nitrogen Trial Data

On-farm trials are being conducted by more and more researchers and farmers. On-farm trials are very different to traditional small plot experiments due to the existence of significant within-field variability in soil-landscape conditions. Traditional statistical techniques like analysis of variance (ANOVA) are commonly adopted for on-farm trial analysis to evaluate overall performance of different treatments, assuming uniform environmental and management factors within a field. As a result, the... K. Mizuta, Y. Miao, J. Lu, R.P. Negrini

55. On-farm Evaluation of a Satellite Remote Sensing-based Precision Nitrogen Management Strategy

Improper management of nitrogen (N) fertilizers in the cropping systems of the U.S. Midwest has resulted in significant N leaching into the Mississippi River Basin that flows to the Gulf of Mexico. The majority of the U.S. Midwest states need to develop a plan for a nutrient loss reduction strategy to decrease N and phosphorous loadings into waters and the Gulf of Mexico by 45% by 2050. In Minnesota, high nitrate concentration and loads have not been significantly reduced in surface and ground... J. Lu, Y. Miao, C.J. Ransom, F. Fernández

56. Enabling Field-level Connectivity in Rural Digital Agriculture with Cloud-based LoRaWAN

The widespread adoption of next-generation digital agriculture technologies in rural areas faces a critical challenge in the form of inadequate field-level connectivity. Traditional approaches to connecting people fall short in providing cost-effective solutions for many remote agricultural locations, exacerbating the digital divide. Current cellular networks, including 5G with millimeter wave technology, are urban-centric and struggle to meet the evolving digital agricultural needs, presenting... Y. Zhang, J. Bailey, A. Balmos, F.A. Castiblanco rubio, J. Krogmeier, D. Buckmaster, D. Love, J. Zhang, M. Allen