Authors
Filter results17 paper(s) found. |
---|
1. Creation Of Prescription For Optimal Nitrogen Fertilization Through Evaluation Of Soil Carbon Amount Using Remotely Sensed DataIn these years, drastic increase of agricultural production costs has been induced, which was triggered by the sharp rise of costs relating to agricultural production materials such as fertilizers and oil. In Japan, the substantial negative influence is anticipated to spread over to management of the farmers particularly in Hokkaido, the northern part of Japan. As one of the measures against this influence, a plan of effective fertilizer application and also... E. Tamura, K. Aijima, K. Niwa, O. Nagata, K. Wakabayashi, C. Hongo |
2. sUAVS Technology For Better Monitoring Crop Status For Winter CanolaThe small-unmanned aircraft vehicles (sUAVS) are currently gaining more popularity in agriculture with uses including identification of weeds and crop production issues, diagnosing nutrient deficiencies, detection of chemical drift, scouting for pests, identification of biotic or abiotic stresses, and prediction of biomass and yield. Research information on the use of sUAVS have been published and conducted in crops such as rice, wheat, and corn, but the development of... I.A. Ciampitti, K. Shroyer, V. Prasad, A. Sharda, M.J. Stamm, H. Wang, K. Price, D. Mangus |
3. Accuracy of Differential Rate Application Technology for Aerial Spreading of Granular Fertiliser Within New ZealandAerial topdressing of granular fertilizer is common practice on New Zealand hill country farms because of the challenging topography. Ravensdown Limited is a New Zealand fertilizer manufacturer, supplier and applicator, who are funding research and development of differential rate application from aircraft. The motivation for utilising this technology is to improve the accuracy of fertilizer application and fulfil the variable nutrient requirements of hill country farms. The capability of... I.J. Yule, S.E. Chok, M.C. Grafton, M. White |
4. Hyperspectral Imaging to Measure Pasture Nutrient Concentration and Other Quality ParametersManaging pasture nutrient requirements on large hill country sheep and beef properties based on information from soil sampling is expensive because of the time and labor involved. High levels of error are also expected as these properties are often greatly variable and it is therefore extremely difficult to sample intensively enough to capture this variation. Extensive sampling was also not considered viable as there was no effective means of spreading fertilizer with a variable rate capability... I.J. Yule, R.R. Pullanagari, G. Kereszturi, M.E. Irwin, P.J. Mcveagh, T. Cushnahan, M. White |
5. North American Soil Test SummaryWith the assistance and cooperation of numerous private and public soil testing laboratories, the International Plant Nutrition Institute (IPNI) periodically summarizes soil test levels in North America (NA). Soil tests indicate the relative capacity of soil to provide nutrients to plants. Therefore, this summary can be viewed as an indicator of the nutrient supplying capacity or fertility of soils in NA. This is the eleventh summary completed by IPNI or its predecessor, the Potash &... Q. Rund, S. Murrell, A. Erbe, R. Williams, E. Williams |
6. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor AlgorithmNitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as accurate... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan |
7. A Tree Planting Site-Specific Fumigant Applicator for Orchard CropsThe goal of this research was to use recent advances in the global positioning system and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in the neighborhood of each tree planting site or tree- planting-site-specific application) to decrease the incidence of replant disease, and achieve the environmental and economical benefits of reducing the application of these toxic chemicals. In the first year of this study we retrofitted a chemical applicator... S.K. Upadhayaya, V. Udompetaikul, M.S. Shafii, G.T. Browne |
8. GIS Web and Mobile Development with Interfaces in QGIS for Variable Rate FertilizationIn this paper we described the implementation of a GIS for Precision Agriculture for sugarcane crop in Colombia. An spatial equation for Variable Rate Fertilization Model was defined using as inputs estimated harvest data, nutrients in soil and fertilizer efficiently. Models for soil and harvest variability are also defined. A personalized plugin for precision agriculture was developed into QGIS software, there is the option of upload maps to a Web and mobile app using the Desktop software and... R. Cuitiva baracaldo, O. Munar vivas, G. Carrillo romero |
9. Meta Deep Learning Using Minimal Training Images for Weed Classification in Wild BlueberryDeep learning convolutional neural networks (CNNs) have gained popularity in recent years for their ability to classify images with high levels of accuracy. In agriculture, they have been applied for disease identification, crop growth monitoring, animal behaviour tracking, and weed classification. Datasets traditionally consisting of thousands of images of each desired target are required to train CNNs. A recent survey of Nova Scotia wild blueberry (Vaccinium angustifolium Ait.) fields,... P.J. Hennessy, T.J. Esau, A.W. Schumann, A.A. Farooque, Q.U. Zaman, S.N. White |
10. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and IndianaPrecision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minnesota.... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor |