Authors
Filter results17 paper(s) found. |
---|
1. Using Soil Attributes To Model Sugar Cane Quality ParametersThe crop area of sugar cane production in Brazil has increased substantially in the last few years, especially to meet the global bioethanol demand. Such increasing production should take place not only in new sugar cane crop areas but mainly with the goal of improving the quality of raw material like sugar content (Pol). Hence, models that can describe the behaviour of the quality parameters of sugar cane may be important to understand the effects of the soil attributes on those parameters. The... F.A. Rodrigues jr., P.S. Magalhães, H.C. Franco, D.G. Cerri |
2. Evaluation of Photovoltaic Modules at Different Installation Angles and Times of the DaySeveral electricity-consuming components for cooling and heating, illumination, ventilation, and irrigation are used to maintain proper environments of protected crop cultivation facilities. Photovoltaic system is considered as one of the most promising alternative power source for protected cultivation. Effects of environment,... S. Chung, J. Kong, Y. Huh, K. Bae, S. Hur, D. Lee, Y. Chae |
3. Multivariate Geostatistics As A Tool To Estimate Physical And Chemical Soil Properties With Reduced Sampling In Area Planted With SugarcanePrecision Agriculture (PA) can be described as a set of tools and techniques applied to agriculture in order to enable localized production management, considering the spatial and temporal variability of crop fields. Among the numerous existing tools, one of the most important ones is the use of geostatistics, whose main objective is the description of spatial patterns and estimation data in non-sampled places. Nowadays, one of the most limiting factors to the... G.M. Sanches, P.S. Graziano magalhaes, H.C. Franco, A.Z. Remacre |
4. Precision Agriculture In Sugarcane Production. A Key Tool To Understand Its Variability.Precision agriculture (PA) for sugarcane represents an important tool to manage local application of fertilizers, mainly because sugarcane is third in fertilizer consumption among Brazilian crops, after soybean and corn. Among the limiting factors detected for PA adoption in the sugarcane industry, one could mention the cropping system complexity, data handling costs, and lack of appropriate decision support systems. The objective of our research group has... P.S. Graziano magalhães, G.M. Sanches, O.T. Kolln, H.C. Franco, O.A. Braunbeck, C. Driemeier |
5. Optical Sensors To Predict Nitrogen Demand By SugarcaneThe low effectiveness of nitrogen (N) from fertilizer is a substantial concern in worldwide which has been threatening the sustainability of sugarcane production. The increment of nitrogen use efficiency (NUE) by sugarcane genotypes associated to the best practices of fertilizer management and nutritional diagnosis methods have higher potential to reduce environment impacts of nitrogen fertilization. Due to the difficult to determine N status in soil test as well as there is not... O.T. Kolln, G.M. Sanches, J. Rossi neto, S.G. Castro, E. Mariano, R. Otto, R. Inamasu, P.S. Magalhães, O.A. Braunbeck, H.C. Franco |
6. Design And Construction Of An Ultrasonic Cutting Width Sensor For Full-Feed Type Mid-Sized Multi-Purpose CombinesPrecision agriculture analyzes the spatial variability according to the characteristics of an optimum setting of agricultural materials. To raise the profitability of agriculture and to reduce the environmental impact, technological research and development of precision agriculture has been conducted. In Asian countries such as Japan... Y. Huh, S. Chung, Y. Chae, J. Lee, S. Kim, M. Choi, K. Jung |
7. The Most Sensitive Growth Stage To Quantify Nitrogen Stress In Sugarcane Using Active Crop Canopy SensorThe use of sensors that allow the application of nitrogen fertilizer at variable rate has been widely used by researchers in many agricultural crops, but without success in sugarcane, probably due to the difficulty of diagnosing the nutritional status of the crop for nitrogen (N). Active crop canopy sensors are based on the principle that the spectral reflectance curve of the leaves are modified by N level. Researchers in USA indicated that in-season N stress in corn can be detected... S.G. Castro, O.T. Kolln, H.S. Nakao, H.C. Franco, O. Braunbeck, P.S. Graziano magalhães, G.M. Sanches |
8. A Precise Fruit Inspection System for Huanglongbing and Other Common Citrus Defects Using GPU and Deep Learning TechnologiesWorld climate change and extreme weather conditions can generate uncertainties in crop production by increasing plant diseases and having significant impacts on crop yield loss. To enable precision agriculture technology in Florida’s citrus industry, a machine vision system was developed to identify common citrus production problems such as Huanglongbing (HLB), rust mite and wind scar. Objectives of this article were 1) to develop a simultaneous image acquisition system using multiple cameras... D. Choi, W. Lee, J.K. Schueller, R. Ehsani, F.M. Roka, M.A. Ritenour |
9. Use of Crop Canopy Reflectance Sensor in Management of Nitrogen Fertilization in Sugarcane in BrazilGiven the difficulty to determine N status in soil testing and lack of crop parameters to recommend N for sugarcane in Brazil raise the necessity of identify new methods to find crop requirement to improve the N use efficiency. Crop canopy sensor, such as those used to measure indirectly chlorophyll content as N status indicator, can be used to monitor crop nutritional demand. The objective of this experiment was to assess the nutritional status of the sugarcane fertilized with different nitrogen... S.G. Castro, G.M. Sanches, G.M. Cardoso, A.E. Silva, H.C. Franco, P.S. Magalhães |
10. Translating Data into Knowledge - Precision Agriculture Database in a Sugarcane Production.The advent of Information Technology in agriculture, surveying and data collection became a simple task, starting the era of "Big Data" in agricultural production. Currently, a large volume of data and information associated with the plant, soil and climate are collected quick and easily. These factors influence productivity, operating costs, investments and environment impacts. However, a major challenge for this area is the transformation of data and information... G.M. Sanches, O.T. Kolln, H.C. Franco, P.S. Magalhaes, D.G. Duft |