Topics
Filter results50 paper(s) found. |
---|
1. Land Cover and Crop Types Classification Using Sentinel-2A Derived Vegetation Indices and an Artificial Neural NetworkDevelopments in remote sensing data acquisition capabilities, data processing and interpretation of ground-based, airborne and satellite observations have made it possible to couple remote sensing technologies and precision crop management systems. Land cover and crop types classification is a fundamental task in remote sensing and is crucial in various environmental and agricultural applications. Accurate and timely information on land cover and crop types is essential for land management, l... B. Bantchina |
2. Portable Soil EC - Development of an Electronic Device for Determining Soil Electrical ConductivityDecision-making in agriculture demands continuous monitoring, a factor that propels the advancement of tools within Agriculture 4.0. In this context, understanding soil characteristics is essential. Electrical conductivity (EC) sensors play a pivotal role in this comprehension. Given this backdrop, the core motivation of this research was developing an accessible and effective electronic device to measure the apparent EC of the soil. It provides features like geolocation, recording of the dat... C.L. Bazzi, L.A. Rauber, W.K. Oliveira, R. Sobjak, K. Schenatto, L. Gebler, L.M. Rabello |
3. Integrating Nonlinear Models and Remotely Sensed Data to Estimate Crop Cardinal DatesCrop planting and harvest dates are a major component affecting agricultural productivity, risk, and nutrient cycling. The ability to track these cardinal dates allows researchers to investigate strategies to manage risk and adapt to climate change. This study was conducted to determine whether nonlinear statistical models combined with remotely sensed data from satellites can be used to estimate planting and harvest dates. Time of planting and harvest were reported by farmers for 16 commerci... C.L. Dos santos, F. Miguez, L. Puntel, D. Bullock |
4. Delineation of Yield Zones Using Optical and Radar Remote SensingIdentifying yield zones in agricultural areas is essential for efficient resource allocation, operational optimization, and decision-making. While optical remote sensing is widely used in precision agriculture, the interest in radar remote sensing data, notably from the Sentinel-1 Synthetic Aperture Radar (SAR), has increased due to its operation in the C-band frequency, capturing data through cloud cover and the availability of free data. The main objective of this study was to evaluate ... I.A. Da cunha, H. Oldoni, D.D. Melo, L.R. Amaral |
5. Influence of Ground Control Points and Processing Parameters on UAS Image Mosaicking for Plant Height EstimationDigital surface models (DSMs) and 3D point clouds, generated using overlapping images from unmanned aircraft systems (UASs), are often used for plant height estimation in phenotyping and precision agriculture. This study examined the effects of the quantity and placement of ground control points (GCPs) and image processing parameters on the creation of DSMs and 3D point clouds for plant height estimation. A 2-ha field containing multiple experimental plots with four crops (corn, cotton, ... C. Yang, H. Zhao, W. Guo, J. Zhang, C. Suh, B.K. Fritz |
6. Dynamic Management Zones for Real-time Precision Agriculture OptimizationPrecision agriculture is an evolving management approach aimed at optimizing resource utilization, enhancing financial returns, and mitigating environmental impacts. The dynamic nature of agricultural conditions throughout a growing season necessitates the integration of innovative remote sensing and precision agriculture techniques. This research explores the creation of dynamic management zones (DMZ) that adapt in real-time to evolving soil and crop conditions. This study focuses on the est... A.H. Rabia, E. Eldeeb |
7. Comparative Analysis of Different On-the-go Soil Sensor SystemsThis study is part of the field of precision agriculture. This management mode is one of the great revolutions in the agriculture field, and it means better management of farm inputs such as fertilizers, herbicides, and seeds by applying the right amount at the right place and at the right time. To succeed in this, we should dispose of a tool that allows a precise assessment of the soil’s physical state. Thus, on-the-go soil sensors can be used as a creative tool to gain bette... H. Moulay, B. Arnall, S. Phillips |
8. The Evaluation of NDVI Response Index Consistency Using Proximal Sensors, UAV and SatellitesThe Response Index NDVI (RINDVI) is described as the response of crops to additional nitrogen (N) fertilizer. It is calculated by dividing the NDVI of the high-N plot (N-rich strip) by the NDVI of the zero-N plot or farmer's practice where less pre-plant N was applied (Arnall and al., 2016). RI values are used to predict yield and monitor top dress N fertilization. Many research has been carried out to d... S. Phillips, B. Arnall, M. Maatougui |
9. A Fusion Strategy to Map Corn Crop ResiduesAccess to post-harvest residue coverage information is crucial for agricultural management and soil conservation. The purpose of this study was to present a new approach based on an ensemble at the decision level for mapping the corn residue. To this end, a set of Landsat 8 imagery and field data including the Residue Cover Fraction (RCF) of corn (149 samples), were used. Firstly, a map of common spectral indices for RCF modeling was prepared based on the spectral bands. Then, the efficiency ... S. Fathololoumi, M.K. Firozjaei, A. Biswas, P. Daggupati |
10. UAV-based Phenotyping of Nitrogen Responses in Winter Wheat: Grain Yield and Nitrogen Use EfficiencyIn the face of escalating global demand for wheat, influenced by burgeoning populations and changing consumption patterns, a profound understanding of determinants like precision nutrient management becomes indispensable. In an on-farm experiment conducted at the Dürnast Research Station in southern Bavaria from 2022 to 2023, we investigated the effects of nitrogen (N) treatments on 18 European winter wheat (Triticum aestivum) cultivars. The field trial design encompassed three dist... J. Zhang, K. Yu |