Login

Proceedings

Find matching any: Reset
2022
Add filter to result:
Authors
Abbas, F
Abdala, M
Abenina, M
Abukmeil, R
Adamchuk, V
Adedeji, O
Adedeji, O.I
Adhikari, K
Adu-Gyamfi, Y
Aggarwal, V
Agneroh, T
Ahmad, A
Ahrends, H.E
Aikes Junior, J
Al Amin, A
Al-Gaadi, K
Alchanati, V
Alchanatis, V
Alderman, P.D
Aldridge, K
Ali, A
Ali, U
Allegro, G
Almallahi, A
Amaral, L.R
Ameglio, L
Amin, S
Amouzou, K.A
Ampatzidis, Y
Anaba, C.I
Andersen, P
Anderson, S.H
Andvaag, E
Antunes, J.F
Archontoulis, S
Arias, A
Arias, A.C
Ashworth, A
Attanayake, A
Attanayake, A.U
Balboa, G
Balla, I
Balzarini, M
Bareth, G
Barker, D
Baumbauer, C
Bautista, F
Bazzi, C
Bazzi, C.L
Bean, G.M
Bede, L
Bedwell, E
Beeri, O
Behrendt, K
Bekkerman, A
Ben-Gal, A
Benke, S
Berger, A
Bergheim, R
Berzins, R
Best, S
Betzek, N
Bhandari, S
Bier, J
Biswas, A
Boejer, O
Bolfe, E
Bolton, C
Bongiovanni, M
Bongiovanni, R
Bonnardel, B
Brazda, D
Brinkhoff, J
Brorsen, W
Butts, C
Bückmann, H
Cabrera Dengra, M
Camberato, J.J
Cambouris, A
Cambouris, A.N
Cammarano, D
Canavari, M
Capolicchio, J
Carlier, A
Carneiro, F.M
Carter, P.R
Cerliani, C
Cesario Pereira Pinto, J
Charvat Jr., K
Charvat, K
Cheema, S.J
Chen, Z
Christensen, A
Ciampitti, I
Cohen, Y
Conway, L.S
Coulter, J.A
Csenki, S
Custer, S
Cutulle, M
DUMONT, B
Dafnaki, D
Dandrifosse, S
Das, A
Das, A.K
Dash, M
Davadant, P
De Neve, S
De Poorter, E
De Waele, T
DeBruin, J
Degioanni, A
Denton, A.M
Dhal, S
Dillen, J
Dong, R
Dos Reis, A.A
Dos Santos, R.S
Dreyer, J.G
DuPont, E.M
Duarte de Val, M
Duchemin, M
Duddu, H
Duddu, H.U
Duff, H
Duff, H.D
Dufrasne, I
Dumont, B
Dutilleul, P
Eberle, D
El Gamal, A
El-Mejjaouy, Y
Elsen, A
Elvir Flores, A
Emmi, L
Enger, B.D
Ennadifi, E
Erickson, B.J
Esau, T
Esau, T.J
Esposito, G
Evers, B
Eyster, R
Farooque, A
Farooque, A.A
Ferguson, R.B
Fernández, F.G
Ferraz Pueyo, C
Ferreyra, R
Figueiredo, G.K
Filippetti, I
Fleming, K
Flint, E.A
Flores, P
Flores, P.J
Floyd, W
Fortes, R
Fortunato, M
Franklin, K
Franklin, K.F
Franz, F
Franzen, D.W
Freitas, R.G
Friell, J
Frimpong, K.A
Friskop, A
Fritz, A
Fulton, J.P
Gallios, I
Gamble, A
Ganascini, D
Garza, C
Gauci, A
Gavioli, A
Gebler, L
Ghimire, B.P
Ghimire, D
Gill, N
Gips, A
Gnatowski, T
Gobezie, T.B
Goldshtein, E
Goldwasser, Y
Gonzalez, J
Goodrich, P
Goodrich, P.J
Gosselin, B
Graff, N
Grewal, K
Gu, H
Gumero, J
Gunther, D
Gunzenhauser, B
Gunzenhauser, R
Guo, W
Gupta, S
Gutteridge, M
Ha, T
Hachisuca, A
Hachisuca, A.
Hachisuca, A.M
Hajda, C
Hammond, J
Hammond, K
Hansel, D
Hansen, N
Harkin, S.J
Harris, G
Harsha Chepally, R
Hartmann, B
Hartschuh, J
Hartschuh, J.M
Hatfield, J.L
Hawkins, E
He, Z
Hegedus, P
Hegedus, P.D
Heggemann, T.W
Hejl, R
Hennessy, P.J
Hensley, R
Hernandez, C
Hettiarachchi, G
Hoffmann Silva Karp, F
Hokanson, G.E
Hong, S
Hongo, C
Hopkins, B
Hopkins, B.G
Horakova, S
Hu, Q
Hüging, H
Ingram, B
Inunciaga Leston, G
Isono, S
Jalem, R.S
Jansky, T
Jasper, J
Jenal, A
Jensen, N
Jensen, R
Jia, M
Jimenez, A
Johal, G
Johnson, E
Johnson, E.U
Johnson, R.M
Jones, J
Jorgensen, R
Kalafatis, S
Kang, C
Karam, A
Karampoiki, M
Karkee, M
Karn, R
Kashetri, S
Katz, L
Kazula, M
Keller, M
Kelley, A
Kepka, M
Kerry, R
Khan, H
Kharel, T
Khosla, R
Kitchen, N.R
Klopfenstein, A
Koch, G
Kolar, P.R
Krishnaswamy, K
Krmenec, A
Krys, K
Kshetri, S
Kubickova, H
Kuehner, K
Kukal, S
Kulmany, I.M
Kumpatla, S
Kyveryga, P
LENOIR, A
Laboski, C.A
Lacerda, L
Lacerda, L.N
Lajunen, A
Lamb, D.W
Lamichhane, R
Lamparelli, R.A
Lang, V
Langovskis, D
Lare, M
Lattanzi, P
Lebeau, F
Leduc, M
Lee, J
Lee, K
Lee, W
Lehmann, J
Lena, B.P
Lessl, J
Leszczyńska, R
Levi, M
Li, D
Li, Y
Liburd, O.E
Lima, J.P
Lin, Z
Lindsey, A
Litaor, I
Liu, H
Loewen, S
Loewen, S.D
Longchamps, L
Lotsi, A.K
Louis, J
Lowenberg-DeBoer, J
Lowenberg‑DeBoer, J
Lu, J
Lund, E
Lund, T
Lusher, J
MacEachern, C
Macura, J
Madugundu, R
Magalhães, P.S
Magyar, F
Mahanta, S
Maharjan, B
Mahmood, S
Mahmoudi, S
Maja, J
Maja, J.J
Mandal, D
Manoj, K
Martelli, R
Martins, M.R
Massey, R
Mathew, J
Mathew, J.J
Maxton, C
Maxwell, B
Maxwell, B.D
Mayer, J
Mazzoleni, R
McArthor, B
McArtor, B
Medici, M
Melchiori, R
Melgar, J
Melnitchouck, A
Mendes, I
Mennuti, D
Mercante, E
Mercatoris, B
Miao, Y
Mieno, T
Milani, I
Milics, G
Miranda, C
Mizuta, K
Molin, J.P
Montull, J.M
Morales Luna, G.L
Morales, A.C
Morales, G
Morales, G.L
Morata, G
Morata, G.T
Moreira, W
Moreno Heras, L
Morlin, F
Moro, E
Mouazen, A.M
Mueller, N
Mulla, D.J
Munnaf, M.A
Murdoch, A
Musil, M
Myers, D
Nadav, I
Nafziger, E.D
Nagel, P
Nambi, E
Naor, A
Nascimento-Silva, K
Nielsen, M.B
Nielsen, R.L
Nišavić, N
Norquest, S
Nze Memiaghe, J
Nze Memiaghe, J.D
O'Sullivan, N
Oh, S
Oliveira, L.P
Oliveira, M.F
Oliveira, S.R
Orellana, M.C
Ortega, A.F
Ortega, R
Ortega, R.A
Ortiz, B
Ortiz, B.V
Otto, R
Oukarroum, A
Owens, P
Owens, P.R
Owusu Ansah, E
Pajuelo Madrigal, V
Palacios, D
Paraforos, D
Parkash, V
Pasquel, D
Pastore, C
Paz, L
Pecze, R
Peerlinck, A
Peerlinck, A.D
Peeters, A
Pelta, R
Peralta, D
Pereira, F.R
Pereira, J.C
Pereira, N.D
Petix, R
Pezzi, F
Peña, J
Plum, J
Poblete, H.P
Pokhrel, A
Poland, J
Portz, G
Postelmans, A
Pourreza, A
Poursina, D
Prasad, R
Prestholt, A
Prostko, E.P
Puntel, L
PÄTZOLD, S
Quanbeck, J
Quinn, D.
Quoitin, B
Raheja, A
Rahman, M.M
Rai, N
Ramachandran, B
Ranieri, E
Ransom, C.
Ransom, C.J
Rathee, G
Rekhi, M
Reusch, S
Reyes Gonzalez, J
Robson, A
Rodrigues, M
Roel, A
Rosen, C
Rossetti, G
Roux, S
Ruma, F.Y
Rutter, M.S
Rydahl, P
Ryu, S
SVIERCOSKI, R
Sade, Z
Saeys, W
Saifuzzaman, M
Samborski, S.M
Sampath, N
Sanches, G.M
Sanz-Saez, A
Saraswat, D
Saurette, D
Sawyer, J.E
Saxena, A
Scaramuzza, F
Schaefer, M.T
Schenatto, K
Schepters, J.S
Schill, S
Schottle, N
Schueller, J.K
Schuenemann, G.M
Schumann, A.W
Sela, S
Shafian, S
Shahid, A
Shanahan, J.F
Sharda, A
Sharma, A
Sharma, V
Shcherbatyuk, N
Shearer, S
Shearer, S.A
Sheppard, J
Sheppard, J.W
Shilo, T
Shirtliffe, S
Shirtliffe, S.J
Shirtliffe, S.U
Shorkey, R
Shumate, S
Siegfried, J
Sielenkemper, M
Sigit, G
Silva, F.V
Silva, R.P
Siqueira, R.D
Smith, A.P
Smith, D.R
Snevajs, H
Snider, J.L
Sobjak, R
Soerensen, M
Soetan, M
Sogbedji, J.M
Sornapudi, S
Souza, E.G
Sparrow, R
Squires, T
Sridharan, S
Stavness, I
Stelford, M
Stenger, J
Stettler, E
Straw, C
Stueve, K
Sudduth, K
Sudduth, K.A
Suh, C
Sun, C
Sun, X
Sunkevic, M
Szatylowicz, J
TORGBOR, B.A
Taberner, A
Takahashi, T
Tamura, E
Tarshish, R
Tavares, T.R
Taylor, J
Taylor, J.A
Tedesco, D
Thompson, L
Thornton, M
Thurmond, M
Tiscornia, G
Tisseyre, B
Todman, L
Tola, E
Torresen, K
Tsibart, A
Tucker, M.W
Turner, I
Tóth, G
Underwood, H
Upadhyaya, P
Utoyo, B
VANDOORNE, B
Valentini, G
Van de Ven, G
Varga, P.M
Vellidis, G
Verma, A.P
Vermeulen, P
Verschwele, A
Vetch, J.M
Veum, K
Veum, K.S
Videla, H
Virk, S
Virk, S.S
Vitali, G
Vona, V
Vong, C
Vories, E
Wakahara, S
Walsh, O
Walsh, O.S
Wang, X
Watkins, E
Watkins, K
Wehrle, R
Welch, S
White, S.N
Wieland, S
Williams, D
Woolley, E
Wyatt, B
Xiong, X
Xu, Z
Yang, C
Ye, D
Yilma, W
Yilma, W.A
Yost, M
Young, J
Zadrazil, F
Zaman, Q
Zaman, Q.U
Zhang, J
Zhang, Q
Zhang, X
Zhang, Y
Zhang, Z
Zhao, H
Zhao, X
Zhou, C
Zhou, J
Ziadi, N
Zuniga-Ramirez, G
da Silva, T.R
de Carvalho, H.W
de Castro, A
del Val, M.D
song, S
Topics
Geospatial Data
Drainage Optimization and Variable Rate Irrigation
On Farm Experimentation with Site-Specific Technologies
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Robotics, Guidance and Automation
Precision Crop Protection
In-Season Nitrogen Management
Education and Outreach in Precision Agriculture
Applications of Unmanned Aerial Systems
Wireless Sensor Networks
Factors Driving Adoption
Precision Horticulture
Land Improvement and Conservation Practices
Smart Weather for Precision Agriculture
Site-Specific Nutrient, Lime and Seed Management
Big Data, Data Mining and Deep Learning
ISPA Community: Economics
Farm Animals Health and Welfare Monitoring
Site-Specific Pasture Management
Profitability and Success Stories in Precision Agriculture
ISPA Community: Latin America
Precision Agriculture and Global Food Security
ISPA Community: Nitrogen
Small Holders and Precision Agriculture
Precision Dairy and Livestock Management
Plenary
Industry Sponsors
Type
Poster
Oral
Year
2022
Home » Year » Results

Year

Filter results180 paper(s) found.

1. Integration of High Resolution Multitemporal Satellite Imagery for Improving Agricultural Crop Classification: a Case Study

Timely and accurate agriculture information is vital for ensuring global food security. Satellite imagery has already been proved as a reliable tool for remote crop mapping. Planet satellite imagery provides high cadence, global satellite coverage with higher temporal and spatial resolution than the Landsat-8 and Sentinel-2. This study examined the potential of utilizing high-resolution multitemporal imagery along with and normalized difference vegetation index (NDVI) to map the agricultural ... U. Ali, T. Esau, A. Farooque, Q. Zaman

2. #DigitAg France

#DigitAg, the Digital Agriculture Convergence Laboratory, is one of 10 French Convergence Institutes financed by the Investissements d'Avenir (Investment for the Future) program. #DigitAg conducts interdisciplinary research between agronomic sciences, engineering sciences (computer science, mathematics, electronics, physics, etc.) and social and management sciences (economics, sociology, business management), bringing together more than 700 experts in these fields to produce the scientifi... J. Taylor

3. A Bayesian Network Approach to Wheat Yield Prediction Using Topographic, Soil and Historical Data

Bayesian Network (BN) is the most popular approach for modeling in the agricultural domain. Many successful applications have been reported for crop yield prediction, weed infestation, and crop diseases. BN uses probabilistic relationships between variables of interest and in combination with statistical techniques the data modeling has many advantages. The main advantages are that the relationships between variables can be learned using the model as well as the potential to deal with missing... M. Karampoiki, L. Todman, S. Mahmood, A. Murdoch, D. Paraforos, J. Hammond, E. Ranieri

4. A Framework for Imputation of Missing Parts in UAV Orthomosaics Using Planetscope and Sentinel-2 Data

In recent years, the emergence of Unmanned Aerial Vehicles (UAV), also known as drones, with high spatial resolution, has broadened the application of remote sensing in agriculture. However, UAV images commonly have specific problems with missing areas due to drone flight restrictions. Data mining techniques for imputing missing data is an activity often demanded in several fields of science. In this context, this research used the same approach to predict missing parts on orthomosaics obtain... F.R. Pereira, A.A. Dos reis, R.G. Freitas, S.R. Oliveira, L.R. Amaral, G.K. Figueiredo, J.F. Antunes, R.A. Lamparelli, E. Moro, N.D. Pereira, P.S. Magalhães

5. A Generative Adversarial Network-based Method for High Fidelity Synthetic Data Augmentation

Digital Agriculture has led to new phenotyping methods that use artificial intelligence and machine learning solutions on image and video data collected from lab, greenhouse, and field environments. The availability of accurately annotated image and video data remains a bottleneck for developing most machine learning and deep learning models. Typically, deep learning models require thousands of unique samples to accurately learn a given task. However, manual annotation of a large dataset will... S. Sridharan, S. Sornapudi, Q. Hu, S. Kumpatla, J. Bier

6. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural Fields

The normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might al... R. Pelta, O. Beeri, T. Shilo, R. Tarshish

7. A Low-tech Approach to Manage Within Field Variability – Toward a Territorial Scale Application

Managing within field variability is promising to achieve European objectives of sustainability in crop production. Technological development has allowed to precisely characterize fields heterogeneity in space and time. However, learnings from low adoption of yield maps in west-European context have highlighted the importance of reliable methods to support decisions. Blackmore et al. designed a delineation method considering yield as an integrative variable that reflects spatial and ... A. Lenoir, B. Vandoorne, B. Dumont

8. A Passive-RFID Wireless Sensor Node for Precision Agriculture

Accurate soil data is crucial for precision agriculture.  While existing optical methods can correlate soil health to the gasses emitted from the field, in-soil electronic sensors enable real-time measurements of soil conditions at the effective root zone of a crop. Unfortunately, modern soil sensor systems are limited in what signals they can measure and are generally too expensive to reasonably distribute the sensors in the density required for spatially accurate feedback.  In thi... P.J. Goodrich, C. Baumbauer, A.C. Arias

9. AgDataBox-IoT Application Development for Agrometeorogical Stations in Smart Farm

Currently, Brazil is one of the world’s largest grain producers and exporters. Brazil produced 125 million tons of soybean in the 2019/2020 growing season, becoming the world’s largest soybean producer in 2020. Brazil’s economic dependence on agribusiness makes investments and research necessary to increase yield and profitability. Agriculture has already entered its 4.0 version, also known as digital agriculture, when the industry has entered the 4.0 era. This new paradigm ... A. Hachisuca, E.G. Souza, E. Mercante, R. Sobjak, D. Ganascini, M. Abdala, I. Mendes, C. Bazzi, M. Rodrigues

10. AgDataBox: Web Platform of Data Integration, Software, and Methodologies for Digital Agriculture

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. Digital agriculture enables the flow of informatio... E.G. Souza, C. Bazzi, A. Hachisuca, R. Sobjak, A. Gavioli, N. Betzek, K. Schenatto, E. Mercante, M. Rodrigues, W. Moreira

Showing 1 to 10 of 180 entries