Login

Proceedings

Find matching any: Reset
Puntel, L
Graziano Magalhães, P.S
Add filter to result:
Authors
Sanches, G.M
Graziano Magalhães, P.S
Franco, H.C
Remacre, A.Z
Graziano Magalhães, P.S
Sanches, G.M
Kolln, O.T
Franco, H.C
Braunbeck, O.A
Driemeier, C
Castro, S.G
Kolln, O.T
Nakao, H.S
Franco, H.C
Braunbeck, O
Graziano Magalhães, P.S
Sanches, G.M
Puntel, L
Pagani, A
Archontoulis, S
Balboa, G
Puntel, L
Melchiori, R
Ortega, R
Tiscornia, G
Bolfe, E
Roel, A
Scaramuzza, F
Best, S
Berger, A
Hansel, D
Palacios, D
Thompson, L
Puntel, L
Archontoulis, S
Cesario Pereira Pinto, J
Thompson, L
Mueller, N
Mieno, T
Balboa, G
Puntel, L
Puntel, L
Thompson , L
Mieno, T
Norquest, S
Topics
Proximal Sensing in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Precision Nutrient Management
Decision Support Systems
ISPA Community: Latin America
Decision Support Systems
In-Season Nitrogen Management
Type
Oral
Poster
Year
2014
2018
2022
Home » Authors » Results

Authors

Filter results8 paper(s) found.

1. Multivariate Geostatistics As A Tool To Estimate Physical And Chemical Soil Properties With Reduced Sampling In Area Planted With Sugarcane

Precision Agriculture (PA) can be described as a set of tools and techniques applied to agriculture in order to enable localized production management, considering the spatial and temporal variability of crop fields. Among the numerous existing tools, one of the most important ones is the use of geostatistics, whose main objective is the description of spatial patterns and estimation data in non-sampled places. Nowadays, one of the most limiting factors to the... G.M. Sanches, P.S. Graziano magalhaes, H.C. Franco, A.Z. Remacre

2. Precision Agriculture In Sugarcane Production. A Key Tool To Understand Its Variability.

Precision agriculture (PA) for sugarcane represents an important tool to manage local application of fertilizers, mainly because sugarcane is third in fertilizer consumption among Brazilian crops, after soybean and corn. Among the limiting factors detected for PA adoption in the sugarcane industry, one could mention the cropping system complexity, data handling costs, and lack of appropriate decision support systems. The objective of our research group has... P.S. Graziano magalhães, G.M. Sanches, O.T. Kolln, H.C. Franco, O.A. Braunbeck, C. Driemeier

3. The Most Sensitive Growth Stage To Quantify Nitrogen Stress In Sugarcane Using Active Crop Canopy Sensor

The use of sensors that allow the application of nitrogen fertilizer at variable rate has been widely used by researchers in many agricultural crops, but without success in sugarcane, probably due to the difficulty of diagnosing the nutritional status of the crop for nitrogen (N). Active crop canopy sensors are based on the principle that the spectral reflectance curve of the leaves are modified by N level. Researchers in USA indicated that in-season N stress in corn can be detected... S.G. Castro, O.T. Kolln, H.S. Nakao, H.C. Franco, O. Braunbeck, P.S. Graziano magalhães, G.M. Sanches

4. Prediction of Corn Economic Optimum Nitrogen Rate in Argentina

Static (i.e. texture and soil depth) and dynamic (i.e. soil water, temperature) factors play a role in determining field or subfield economically optimal N rates (EONR). We used 50 nitrogen (N) trials from Argentina at contrasting landscape positions and soil types, various soil-crop measurements from 2012 to 2017, and statistical techniques to address the following objectives: a) characterize corn yield and EONR variability across a multi-landscape-year study in central west Buenos Aires,... L. Puntel, A. Pagani, S. Archontoulis

5. How Digital is Agriculture in South America? Adoption and Limitations

A rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic review... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios

6. Evaluating APSIM Model for Site-Specific N Management in Nebraska

Many approaches have been developed to estimate the optimal N application rates and increase nitrogen use efficiency (NUE). In particular, in-season and variable-rate fertilizer applications have the potential to apply N during the time of rapid plant N uptake and at the rate needed, thereby reducing the potential for nitrogen fertilizer losses. However, there remains great challenges in determining the optimal N rate to apply in site-specific locations within a field in a given year. Additionally,... L. Thompson, L. Puntel, S. Archontoulis

7. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in Nebraska

Attaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according to... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel

8. Evaluation of Crop Model Based Tools for Corn Site-specific N Management in Nebraska

There is a critical need to reduce the nitrogen (N) footprint from corn-based cropping systems while maintaining or increasing yields and profits. Digital agriculture technologies for site-specific N management have been demonstrated to improve nitrogen use efficiency (NUE). However, adoption of these technologies remains low. Factors such as cost, complexity, unknown impact and large data inputs are associated with low adoption. Grower’s hands-on experience coupled with targeted research... L. Puntel, L. Thompson , T. Mieno, S. Norquest