Login

Proceedings

Find matching any: Reset
Shahar, Y
Leszczyńska, E
Lu, Y
Salem, M.A
Lenssen, A
Souza, E
Add filter to result:
Authors
Souza, E
Schenatto, K
Rodrigues, F
Rocha, D
Bazzi, C.L
Schenatto, K
Bazzi, C.L
Bier, V
Souza, E
Walsh, O.S
Samborski, S.M
Gozdowski, D
Stępień, M
Leszczyńska, E
Licht, M.A
Lenssen, A
Elmore, R
Souza, E
Schenatto, K
Bazzi, C
Taylor, J
Shahar, Y
James, P
Blacker, C
Leese, S
Sanderson, R
Kavanagh, R
Bazzi, C.L
Oliveira, W.K
Sobjak, R
Schenatto, K
Souza, E
Hachisuca, A
Franz, F
Rabia, A.H
Salem, M.A
Salem, M.A
Rabia, A.H
Wang, Y
Lu, Y
Morris, D
Benjamin, M
Lavagnino, M
McIntyre, J
Xu, J
Lu, Y
Xu, J
Lu, Y
Topics
Precision Conservation Management
Precision Nutrient Management
Profitability, Sustainability and Adoption
Education and Outreach in Precision Agriculture
Geospatial Data
Wireless Sensor Networks and Farm Connectivity
Big Data, Data Mining and Deep Learning
Precision Crop Protection
Farm Animals Health and Welfare Monitoring
Robotics and Automation with Row and Horticultural Crops
International Symposium on Robotics and Automation
Type
Poster
Oral
Year
2014
2016
2018
2024
Home » Authors » Results

Authors

Filter results12 paper(s) found.

1. Comparison Of Management Zones Generated By The K-Means And Fuzzy C-Means Methods

The generation of Management Zones (MZ) is an economic alternative to make viable the precision agriculture (RODRIGUES & ZIMBACK, 2002) because they work as operation units for the inputs localized application and as soil and culture sample indicators. For the field division in... E. Souza, K. Schenatto, F. Rodrigues, D. Rocha, C. Bazzi

2. The Influence Of The Interpolation Method In The Management Zones Generation

The definition of management zones (MZ) allows the concepts of precision agriculture (PA) to be used even in small producers. Methods for defining these MZ were created and are being used, obtaining satisfactory results with different crops and parameters (FLEMING & WESTFALL, 2000; ORTEGA & SANTIBÁÑEZ, 2007; MILANI et al., 2006). Through methodologies, the attributes that are influencing the productivity are selected and thematic maps are generated with the... K. Schenatto, C. Bazzi, V. Bier, E. Souza

3. On-Farm Evaluation of an Active Optical Sensor Performance for Variable Nitrogen Application in Winter Wheat

Winter wheat (Triticum aestivum L.) represents almost 50% of total cereal production in the European Union, accounting for approximately 25% of total mineral nitrogen (N) fertilizer applied to all crops. Currently, several active optical sensor (AOS) based systems for optimizing variable N fertilization are commercially available for a variety of crops, including wheat. To ensure successful adoption of these systems, definitive measurable benefits must be demonstrated. Nitrogen management strategies... O.S. Walsh, S.M. Samborski, D. Gozdowski, M. Stępień, E. Leszczyńska

4. Maize Seeding Rate Optimization in Iowa Using Soil and Topographic Characteristics.

The ability to collect soil, topography, and productivity information at spatial scales has become more feasible and more reliable with many advancement in precision technologies. This ability, combined with precision services and the accessibility farmers have to equipment capable implementing precision practices, has led to continued interest in making site-specific crop management decisions. The objective of this research was to utilize soil and topographic parameters to optimize seeding rates... M.A. Licht, A. Lenssen, R. Elmore

5. Creating Thematic Maps and Management Zones for Agriculture Fields

Thematic maps (TMs) are maps that represent not only the land but also a topic associated with it, and they aim to inform through graphic symbols where a specific geographical phenomenon occurs. Development of TMs is linked to data collection, analysis, interpretation, and representation of the information on a map, facilitating the identification of similarities, and enabling the visualization of spatial correlations. Important issues associated with the creation of TMs are: selection of the... E. Souza, K. Schenatto, C. Bazzi

6. Experiences in the Development of Commercial Web-Based Data Engines to Support UK Growers Within an Industry-Academic Partnership

The lifecycle of Precision Agriculture data begins the moment that the measurement is taken, after which it may pass through each multiple data processes until finally arriving as an output employed back in the production system. This flow can be hindered by the fact that many farm datasets have different spatial resolutions. This makes the process to aggregate or analyse multiple Precision Agriculture layers arduous and time consuming.  Precision Decisions Ltd located in Yorkshire,... J. Taylor, Y. Shahar, P. James, C. Blacker, S. Leese, R. Sanderson, R. Kavanagh

7. AgDataBox-IoT - Managing IoT Data and Devices on Precision Agriculture

The increasing global population has resulted in a substantial demand for nourishment, which has prompted the agricultural sector to investigate ways to improve efficiency. Precision agriculture (PA) uses advanced technologies such as the Internet of Things (IoT) and sensor networks to collect and analyze field information. Although the advantages are numerous, the available data storage, management, and analysis resources are limited. Therefore, creating and providing a user-friendly web application... C.L. Bazzi, W.K. Oliveira, R. Sobjak, K. Schenatto, E. Souza, A. Hachisuca, F. Franz

8. Potato Disease Detection Using Laser Speckle Imaging and Deep Learning

Early detection of potato diseases is essential for minimizing crop loss. Implementing advanced imaging techniques can significantly improve the accuracy and efficiency of disease detection in potato crops. Leveraging machine learning algorithms can further enhance the speed and precision of disease identification, enabling timely intervention measures. This work presents a novel potato disease detection technique using whole-potato speckle imaging and deep learning. Laser Speckle Imaging (LSI),... A.H. Rabia, M.A. Salem

9. Development of a High-throughput UAV System for Precision Weed Detection and Control Using Laser Speckle Imaging and UV-C Irradiation

Traditional weed control methods, predominantly reliant on herbicides or labor-intensive ground robots, present notable environmental and efficiency challenges within agricultural practices. To address these concerns, this study introduces an innovative approach utilizing unmanned aerial vehicles (UAVs) for autonomous weed detection and control in agricultural fields. Our proposed system depends on the agility of UAV platforms, integrating two primary technologies. Firstly, Laser Speckle Imaging... M.A. Salem, A.H. Rabia

10. 3D Computer Vision with a Spatial-temporal Neural Network for Lameness Detection of Sows

The lameness of sows is one of the biggest concerns for swine producers, which can lead to considerable economic losses due to reduced productivity and welfare. There is a real need for early detection of lameness in sows to enable timely intervention and minimize loss. Currently, lame detection relies on visual observation and locomotion scoring of sows, which is subjective, labor-intensive, and difficult to conduct for large groups of animals within a short time. This study presents 3D computer... Y. Wang, Y. Lu, D. Morris, M. Benjamin, M. Lavagnino, J. Mcintyre

Showing 1 to 10 of 12 entries