Login

Proceedings

Find matching any: Reset
Yoshida, K
Fernandez, O
Yost, M
Floyd, W
Farooque, A.A
Fathololoumi, S
Add filter to result:
Authors
Hongo, C
Furukawa, T
Sigit, G
Maki, M
Honma, K
Yoshida, K
Oki, K
Shirakawa, H
Conway, L
Yost, M
Kitchen, N
Sudduth, K
Myers, B
Bobryk, C.W
Yost, M
Kitchen, N
Skouby, D
Schumacher, L
Yost, M
Kitchen, N.R
Stewart, S
Kitcken, N
Yost, M
Conway, L
Esau, T.J
Farooque, A.A
Abbas, F
Straw, C
Wyatt, B
Smith, A.P
Watkins, K
Hong, S
Floyd, W
Williams, D
Garza, C
Jansky, T
Hennessy, P.J
Esau, T.J
Schumann, A.W
Farooque, A.A
Zaman, Q.U
White, S.N
Flint, E.A
Yost, M
Hopkins, B.G
Fathololoumi, S
Firozjaei, M.K
Biswas, A
Daggupati, P
Topics
Remote Sensing Applications in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Agricultural Education
Site-Specific Nutrient, Lime and Seed Management
Precision Horticulture
Geospatial Data
Big Data, Data Mining and Deep Learning
In-Season Nitrogen Management
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Type
Poster
Oral
Year
2012
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results10 paper(s) found.

1. Estimation of Rice Yield from MODIS Data in West Java, Indonesia

Chiharu Hongo1*, Takaaki Furukawa1, Gunardi Sigit2, Masayasu Maki3, Koki Honma3,... C. Hongo, T. Furukawa, G. Sigit, M. Maki, K. Honma, K. Yoshida, K. Oki, H. Shirakawa

2. Claypan Depth Effect on Soil Phosphorus and Potassium Dynamics

Understanding the effects of fertilizer addition and crop removal on long-term change in spatially-variable soil test P (STP) and soil test K (STK) is crucial for maximizing the use of grower inputs on claypan soils. Using apparent electrical conductivity (ECa) to estimate topsoil depth (or depth to claypan, DTC) within fields could help capture the variability and guide site-specific applications of P and K. The objective of this study was to determine if DTC derived from ECa... L. Conway, M. Yost, N. Kitchen, K. Sudduth, B. Myers

3. Field Potential Soil Variability Index to Identify Precision Agriculture Opportunity

Precision agriculture (PA) technologies used for identifying and managing within-field variability are not widely used despite decades of advancement. Technological innovations in agronomic tools, such as canopy reflectance or electrical conductivity sensors, have created opportunities to achieve a greater understanding of within-field variability. However, many are hesitant to adopt PA because uncertainty exists about field-specific performance or the potential return on investment. These concerns... C.W. Bobryk, M. Yost, N. Kitchen

4. A Content Review of Precision Agriculture Courses Across the US

Knowledge of what precision agriculture (PA) content is currently taught across the United States will help build a better understanding for what PA instructors should incorporate into their classes in the future. The University of Missouri partnered with several universities throughout the nation on a USDA challenge grant. Precision Agriculture faculty from 24 colleges/universities from across the U.S. shared their PA content by sharing their syllabi from 43 different courses. The syllabi were... D. Skouby, L. Schumacher, M. Yost, N.R. Kitchen

5. Optimizing Corn Seeding Depth by Soil Texture to Achieve Uniform Stand

Corn (Zea mays L.) yield potential can be affected by uneven emergence. Corn emergence is influenced by both management and environmental conditions. Varying planting depth and rate as determined by soil characteristics could help improve emergence uniformity and grain yield. This study was conducted to assess varying corn seeding depths on plant emergence uniformity and yield on fine- and coarse-textured soils. Research was conducted on alluvial soil adjacent to the Missouri river with contrasting... S. Stewart, N. Kitcken, M. Yost, L. Conway

6. Temperature Effect on Wild Blueberry Fruit Quality During Mechanical Harvest

Mechanical harvesters, utilizing a range of technologies, have been developed for timely operations and remain the most cost-effective means of picking the wild blueberry crop. Approximately 95% of wild blueberries in Atlantic Canada are immediately frozen and processed, while only a small percentage is sold in the fresh market. However, the producers can benefit by increasing the value of their harvested crop through fresh market sales. The objective of this study was to determine the optimum... T.J. Esau, A.A. Farooque, F. Abbas

7. Investigating Spatial Relationship of Apparent Electrical Conductivity with Turfgrass and Soil Characteristics in Sand-capped Golf Course Fairways

Turfgrass quality decreases when grown on fine textured soils that are irrigated with poor quality water. As a result, sand-capping (i.e., a sand layer above existing native soil) is now considered during golf course fairway renovation and construction. Mapping spatial variability of soil apparent electrical conductivity (ECa) has recently been suggested to have applications for precision turfgrass management (PTM) in native soil fairways, but sand-capped fairways have received less... C. Straw, B. Wyatt, A.P. Smith, K. Watkins, S. Hong, W. Floyd, D. Williams, C. Garza, T. Jansky

8. Meta Deep Learning Using Minimal Training Images for Weed Classification in Wild Blueberry

Deep learning convolutional neural networks (CNNs) have gained popularity in recent years for their ability to classify images with high levels of accuracy. In agriculture, they have been applied for disease identification, crop growth monitoring, animal behaviour tracking, and weed classification. Datasets traditionally consisting of thousands of images of each desired target are required to train CNNs. A recent survey of Nova Scotia wild blueberry (Vaccinium angustifolium Ait.) fields,... P.J. Hennessy, T.J. Esau, A.W. Schumann, A.A. Farooque, Q.U. Zaman, S.N. White

9. Variable Rate Nitrogen Approach in a Potato-wheat-wheat Cropping System

Nitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Different factors such as topography, soil properties, historical yield, and crop stress affect nitrogen (N) needs within a field. Applying variable N within a field could improve precision agriculture. Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable rate application—with... E.A. Flint, M. Yost, B.G. Hopkins

10. A Fusion Strategy to Map Corn Crop Residues

Access to post-harvest residue coverage information is crucial for agricultural management and soil conservation. The purpose of this study was to present a new approach based on an ensemble at the decision level for mapping the corn residue. To this end, a set of Landsat 8 imagery and field data including the Residue Cover Fraction (RCF) of corn (149 samples), were used. Firstly, a map of common spectral indices for RCF modeling was prepared based on the spectral bands. Then, the efficiency of... S. Fathololoumi, M.K. Firozjaei, A. Biswas, P. Daggupati

Showing 1 to 10 of 10 entries