Login

Proceedings

Find matching any: Reset
Owens, P
Casanova, J.L
Chen , J
Chen, C
Caragea, D
Casey, F
Add filter to result:
Authors
Chen , J
Chen, P.L
Zhao, J.C
Wang, S.Y
Li, J.C
Zhang, Q
Hu, T.H
Shi, G.L
Franzen, D.W
Casey, F
Staricka, J
Long, D
Lamb, J
Sims, A
Halvorson, M
Hofman, V
Casanova, J.L
Fraile, S
Romo, A
Sanz, J
Moclán, C
Ashworth, A
Kharel, T
Owens, P
Sapkota, A
Roby, M
Chen, C
Kisekka, I
Bari, M.A
Bakshi, A
Witt, T
Caragea, D
Jagadish, K
Felderhoff, T
Pramanik, S
Choton, J
Topics
Profitability, Sustainability and Adoption
Spatial and Temporal Variability in Crop, Soil and Natural Resources
Remote Sensing Application / Sensor Technology
Small Holders and Precision Agriculture
Precision Agriculture for Sustainability and Environmental Protection
Big Data, Data Mining and Deep Learning
Type
Oral
Poster
Year
2016
2008
2022
2024
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Yield, Residual Nitrogen and Economic Benefit of Precision Seeding and Laser Land Leveling for Winter Wheat

Rapid socio-economic changes in China, such as land conversion and urbanization etc., are creating new scopes for application of precision agriculture (PA). It remains unclear the application effective and economic benefits of precision agriculture technologies in China. In this study, our specific goal was to analyze the impact of precision seeding and laser land leveling on winter wheat yield,... J. Chen , P.L. Chen, J.C. Zhao, S.Y. Wang, J.C. Li, Q. Zhang, T.H. Hu, G.L. Shi

2. Regional Usefulness of Nitrogen Management Zone Delineation Tools

In the Northern Plains of Montana, North Dakota and Minnesota, a number of site-specific tools have been used to delineate nitrogen management zones. A three-year study was conducted using yield mapping, elevation measurements, satellite imagery, aerial Ektochrome® photography, and soil EC to delineate nitrogen management zones and compare these zones to residual fall soil nitrate. At most of the sites, variable-rate N was applied and compared with uniform N application. The site-specific... D. Franzen, F. Casey, J. Staricka, D. Long, J. Lamb, A. Sims, M. Halvorson, V. Hofman

3. Precision Farming by Means of Remote Sensing.

In order to improve the wine quality a study has been carried out on a vineyard. From two different types of satellite images, 5 products have been obtained and represented in maps. DMC-UK images, with a resolution of 32 meters and QUICK-BIRD images, with a resolution of 0.6 meters have been used. Through the bands of these images, the following products were obtained: the NDVI, with which users find out which zones in their estates have the worst condition; Mean Vegetation State, which is a comparative... J.L. Casanova, S. Fraile, A. Romo, J. Sanz, C. Moclán

4. Evaluating How Operator Experience Level Affects Efficiency Gains for Precision Agricultural Tools

Tractor guidance (TG) improve environmental gains relative to non-precision technologies; however, studies evaluating how tractor operator experience for non-guidance comparisons impact gains are nonexistent. This study explores spatial relationships of overlaps and gaps with operator experience level (0-1; 2-3; 6+ years) during fertilizer and herbicide applications based on terrain attributes.  Tractor paths recorded by global navigation satellite systems were used to create overlap polygons.... A. Ashworth, T. Kharel, P. Owens

5. Estimating Spatial and Temporal Variability in Soil Respiration Using UAV-based Multispectral and Thermal Images in an Irrigated Pistachio (Pistachia Vera L.) Orchard

Soil respiration (Rs) accounts for the autotrophic and heterotrophic respiration happening in the soil and is a major component of the carbon budget of agricultural ecosystems. Rs is controlled by various interactive factors, including soil moisture, temperature, soil properties, and vegetation productivity. To quantify the carbon budget of climate-smart agriculture systems, it is necessary to understand how irrigation and cover cropping management practices impact... A. Sapkota, M. Roby, C. Chen, I. Kisekka

6. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System Imagery

In the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff

Showing 1 to 6 of 6 entries