Login

Proceedings

Find matching any: Reset
Campana, M
Corrêdo, L
Castro, S.G
Owens, P.R
Constas, K
Erdle, K
Add filter to result:
Authors
Bettiol, G.M
Inamasu, R.Y
Rabello, L.M
Bernardi, A.C
Campana, M
Oliveira, P.P
Mistele, B
Schmidhalter, U
Erdle, K
Schmidhalter, U
Erdle, K
Kolln, O.T
Sanches, G.M
Rossi Neto, J
Castro, S.G
Mariano, E
Otto, R
Inamasu, R
Magalhães, P.S
Braunbeck, O.A
Franco, H.C
Sela, S
van-Es, H
McLellan, E
Melkonian, J
Marjerison , R
Constas, K
Castro, S.G
Sanches, G.M
Cardoso, G.M
Silva, A.E
Franco, H.C
Magalhães, P.S
Maldaner, L
Molin, J
Tavares, T
Mendez, L
Corrêdo, L
Duarte, C
Gandorfer, M
Schleicher, S
Erdle, K
Adhikari, K
Smith, D.R
Hajda, C
Owens, P.R
Topics
Precision Dairy and Livestock Management
Sensor Application in Managing In-season Crop Variability
Remote Sensing Applications in Precision Agriculture
Precision Nutrient Management
Precision Nutrient Management
Geospatial Data
Profitability and Success Stories in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Type
Poster
Oral
Year
2012
2014
2016
2018
2022
Home » Authors » Results

Authors

Filter results9 paper(s) found.

1. Spatial Variability of Soil Properties in Intensively Managed Tropical Grassland in Brazil

For the intensification of tropical grass pastures systems the soil fertility building up by liming and balanced fertilization is necessary. The knowledge of spatial variability soil properties is useful in the rational use of inputs, as in the variable rate application of lime and fertilizers. PA requires methods to indicate the spatial variability of soil and plant parameters. The objective of this work was to map and evaluate the soil properties and maps the site specific liming and fertilizer... G.M. Bettiol, R.Y. Inamasu, L.M. Rabello, A.C. Bernardi, M. Campana, P.P. Oliveira

2. Comparison of Active and Passive Spectral Sensors in Discriminating Biomass Parameters and Nitrogen Status in Wheat Cultivars

Several sensor systems are available for ground-based remote sensing in crops. Vegetation indices of multiple active and passive sensors have seldom been compared in determining plant health. This study was aimed to compare active and passive sensing systems in terms of their ability to recognize agronomic parameters. One bi-directional passive radiometer (BDR) and three active sensors (Crop Circle, GreenSeeker, and an active flash sensor (AFS)) were tested for their ability to assess six destructively... B. Mistele, U. Schmidhalter, K. Erdle

3. Spectral High-Throughput Assessments Of Phenotypic Differences In Spike Development, Biomass And Nitrogen Partitioning During Grain Filling Of Wheat Under High Yielding Western European Conditions

Single plant traits such as green biomass, spike dry weight, biomass and nitrogen (N) transfer to grains are important traits for final grain yield. However, methods to assess these traits are laborious and expensive. Spectral reflectance measurements allow researchers to assess cultivar differences of yield-related plant traits and translocation parameters that are affected by different genetic material and varying amounts of available N. In a field experiment, six high-yielding wheat cultivars... U. Schmidhalter, K. Erdle

4. Optical Sensors To Predict Nitrogen Demand By Sugarcane

The low effectiveness of nitrogen (N) from fertilizer is a substantial concern in worldwide which has been threatening the sustainability of sugarcane production. The increment of nitrogen use efficiency (NUE) by sugarcane genotypes associated to the best practices of fertilizer management and nutritional diagnosis methods have higher potential to reduce environment impacts of nitrogen fertilization. Due to the difficult to determine N status in soil test as well as there is not... O.T. Kolln, G.M. Sanches, J. Rossi neto, S.G. Castro, E. Mariano, R. Otto, R. Inamasu, P.S. Magalhães, O.A. Braunbeck, H.C. Franco

5. Using the Adapt-N Model to Inform Policies Promoting the Sustainability of US Maize Production

Maize (Zea mays L.) production accounts for the largest share of crop land area in the U.S. It is the largest consumer of nitrogen (N) fertilizers but has low N Recovery Efficiency (NRE, the proportion of applied N taken up by the crop). This has resulted in well-documented environmental problems and social costs associated with high reactive N losses associated with maize production. There is a potential to reduce these costs through precision management, i.e., better application timing, use... S. Sela, H. Van-es, E. Mclellan, J. Melkonian, R. Marjerison , K. Constas

6. Use of Crop Canopy Reflectance Sensor in Management of Nitrogen Fertilization in Sugarcane in Brazil

Given the difficulty to determine N status in soil testing and lack of crop parameters to recommend N for sugarcane in Brazil raise the necessity of identify new methods to find crop requirement to improve the N use efficiency. Crop canopy sensor, such as those used to measure indirectly chlorophyll content as N status indicator, can be used to monitor crop nutritional demand. The objective of this experiment was to assess the nutritional status of the sugarcane fertilized with different nitrogen... S.G. Castro, G.M. Sanches, G.M. Cardoso, A.E. Silva, H.C. Franco, P.S. Magalhães

7. Identifying and Filtering Out Outliers in Spatial Datasets

Outliers present in the dataset is harmful to the information quality contained in the map and may lead to wrong interpretations, even if the number of outliers to the total data collected is small. Thus, before any analysis, it is extremely important to remove these errors. This work proposes a sequential process model capable of identifying outlier data when compared their neighbors using statistical parameters. First, limits are determined based on the median range of the values of all the... L. Maldaner, J. Molin, T. Tavares, L. Mendez, L. Corrêdo, C. Duarte

8. Barriers to Adoption of Smart Farming Technologies in Germany

The number of smart farming technologies available on the market is growing rapidly. Recent surveys show that despite extensive research efforts and media coverage, adoption of smart farming technologies is still lower than expected in Germany. Media analysis, a multi stakeholder workshop, and the Adoption and Diffusion Outcome Prediction Tool (ADOPT) (Kuehne et al. 2017) were applied to analyze the underlying adoption barriers that explain the low to moderate adoption levels of smart farming... M. Gandorfer, S. Schleicher, K. Erdle

9. Mapping Soil Health and Grain Quality Variations Across a Corn Field in Texas

Soil health is a key property of soils influencing grain yield and quality. Within-field mapping of soil health index and grain quality can help farmers and managers to adjust site-specific farm management decisions for economic benefits. A study was conducted to map within-field soil health and grain protein and oil content variations using apparent electrical conductivity (ECa) and terrain attributes as their predictors. Two hundred and two topsoil samples were analyzed to determine soil health... K. Adhikari, D.R. Smith, C. Hajda, P.R. Owens

Showing 1 to 9 of 9 entries