Login

Proceedings

Find matching any: Reset
Mori, K
Wiseman, L
Magalhães, P.S
Add filter to result:
Authors
Castro, S.G
Sanches, G.M
Cardoso, G.M
Silva, A.E
Franco, H.C
Magalhães, P.S
Hirai, Y
Beppu, Y
Mori, Y
Tomita, K
Hamagami, K
Mori, K
Uchida, S
Inaba, S
Wiseman, L
Sanderson, J
Topics
Precision Nutrient Management
Spatial and Temporal Variability in Crop, Soil and Natural Resources
Precision Agriculture and Global Food Security
Type
Oral
Year
2016
2008
2018
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Use of Crop Canopy Reflectance Sensor in Management of Nitrogen Fertilization in Sugarcane in Brazil

Given the difficulty to determine N status in soil testing and lack of crop parameters to recommend N for sugarcane in Brazil raise the necessity of identify new methods to find crop requirement to improve the N use efficiency. Crop canopy sensor, such as those used to measure indirectly chlorophyll content as N status indicator, can be used to monitor crop nutritional demand. The objective of this experiment was to assess the nutritional status of the sugarcane fertilized with different nitrogen... S.G. Castro, G.M. Sanches, G.M. Cardoso, A.E. Silva, H.C. Franco, P.S. Magalhães

2. Principal Component Analysis of Rice Production Environment in the Rice Terrace Region

Environmental conditions that affect rice production, such as air temper- ature, relative humidity, solar radiation, effective cation exchangeable capacity (ECEC) of the soil, and total nitrogen in irrigation water, were assessed for 4 paddy fields in Hoshino village, Fukuoka prefecture in Japan. Also, environ- mental factors that affected rice quality (physicochemical properties of rice grains and cooked rice) were identified using data during the beginning of a ripening period (20 days after... Y. Hirai, Y. Beppu, Y. Mori, K. Tomita, K. Hamagami, K. Mori, S. Uchida, S. Inaba

3. Realising the Full Potential of Precision Agriculture: Encouraging Farmer 'Buy-in' by Building Trust in Data Sharing

Uncertainty around the ownership, privacy and security of farm data are most commonly the reasons cited for farmer’s reluctance to “buy-in” to big data in agriculture. Evidence provided to the recent US Committee on Commerce, Science, and Transportation Subcommittee on Consumer Protections, Product Safety, Insurance, and Data Security, United States Senate Technology in Agriculture: Data Driven Farming (Nov 2017) highlighted that “data ownership, and related... L. Wiseman, J. Sanderson

Showing 1 to 3 of 3 entries