Authors
Filter results11 paper(s) found. |
---|
1. Assessing Definition Of Management Zones Trough Yield MapsYield mapping is one of the core tools of precision agriculture, showing the result of combined growing factors. In a series of yield maps collected along seasons it is possible to observe not only the spatial distribution of the productivity but also its spatial consistency among different seasons. This work proposes the study of distinct methods to analyze yield stability in grain crops regarding its potential for defining management zones from a historical sequence of yield maps. Two methods... M.T. Eitelwein, J.P. Molin, M. Spekken, R.G. Trevisan |
2. Using Unmanned Aerial Vehicle and Active-Optical Sensor to Monitor Growth Indices and Nitrogen Nutrition of Winter WheatUsing unmanned aerial vehicle (UAV) remote sensing monitoring system can rapidly and cost-effectively provide crop canopy information for growth diagnosis and precision fertilizer regulation. RapidScan CS-45 (Holland, Lincoln, NE, USA) is a portable active-optical sensor designed for timely, non-destructive obtaining plant canopy information without being affected by weather condition. UAV equipped with RapidScan, is of great significant for rapidly monitoring crop growth and nitrogen (N) status.... X. Liu, Q. Cao, Y. Tian, Y. Zhu, Z. Zhang, W. Cao |
3. Use of Proximal Soil Sensing to Delineate Management Zones in a Commercial Potato Field in Prince Edward Island, CanadaManagement zones (MZs) are delineated areas within an agricultural field with relatively homogenous soil properties. Such MZs can often be used for site-specific management of crop production inputs. The purpose of this study was to determine the efficiency of two proximal soil sensors for delineating MZs in an 8.1-ha commercial potato (Solanum tuberosum L.) field in Prince Edward Island (PEI), Canada. A galvanic contact resistivity sensor (Veris-3100 [Veris]) and electromagnetic induction sensors... A. Cambouris, A. Lajili, K. Chokmani , I. Perron, V. Adamchuk, A. Biswas , B. Zebrath |
4. Using a UAV-Based Active Canopy Sensor to Estimate Rice Nitrogen StatusActive canopy sensors have been widely used in the studies of crop nitrogen (N) estimation as its suitability for different environmental conditions. Unmanned aerial vehicle (UAV) is a low-cost remote sensing platform for its great flexibility compared to traditional ways of remote sensing. UAV-based active canopy sensor is expected to take the advantages of both sides. The objective of this study is to determine whether UAV-based active canopy sensor has potential for monitoring rice N status,... S. Li, Q. Cao, X. Liu, Y. Tian, Y. Zhu |
5. Developing a Wheat Precision Nitrogen Management Strategy by Combining Satellite Remote Sensing Data and WheatGrow ModelPrecision nitrogen (N) management (PNM) is becoming increasingly popular due to its ability to synchronize crop N demand with soil N supply spatiotemporally. The previous evidence has demonstrated that variable rate fertilization contributes to achieving high yields and high efficiencies. However, PNM at the regional level remains unclear and challenging. This study aims to develop a novel management zone (MZ)-based PNM strategy (MZ-PNM) to optimize the basal and topdressing N rates at the regional... Y. Miao, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, X. Chen, Y. Li |
6. Potential Benefits of Variable Rate Nitrogen Topdressing Strategy Coupled with Zoning Technique: a Case Study in a Town-scale Rice Production SystemIntegrating remote sensing (RS)-based variable rate nitrogen (N) recommendation (VRNR) algorithms and management zones (MZs) may improve the accuracy and efficiency of site-specific N management. However, its potential benefits for application in commercial rice production systems can hardly be assessed, since it requires to intervene in common agricultural practices and causes certain economic and environmental consequences. Through a machine learning approach, this study aims to comprehensively... J. Zhang, W. Wang, Z. Fu, Q. Cao, Y. Tian, Y. Zhu, W. Cao, X. Liu |
7. Optimizing Nitrogen Application in Global Wheat Production by an Integrated Bayesian and Machine Learning ApproachWheat production plays a pivotal role in global food security, with nitrogen fertilizer application serving as a critical factor. The precise application of nitrogen fertilizer is imperative to maximize wheat yield while avoiding environmental degradation and economic losses resulting from excess or inadequate usage. The integration of Bayesian and machine learning methodologies has gained prominence in the realm of agricultural research. Bayesian and machine learning based methods have great... Z. Liu, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao |
8. A Growth Stage Centric Approach to Field Scale Corn Yield Estimation by Leveraging Machine Learning Methods from Multimodal DataField scale yield estimation is labor-intensive, typically limited to a few samples in a given field, and often happens too late to inform any in-season agronomic treatments. In this study, we used meteorological data including growing degree days (GDD), photosynthetic active radiation (PAR), and rolling average of rainfall combined with hybrid relative maturity, organic matter, and weekly growth stage information from three small-plot research locations... L. Waltz, S. Katari, S. Khanal, T. Dill, C. Porter, O. Ortez, L. Lindsey, A. Nandi |
9. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System ImageryIn the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff |
10. Cyberinfrastructure for Machine Learning Applications in Agriculture: Experiences, Analysis, and VisionAdvancements in machine learning algorithms and GPU computational speeds over the last decade have led to remarkable progress in the capabilities of machine learning. This progress has been so much that, in many domains, including agriculture, access to sufficiently diverse and high-quality datasets has become a limiting factor. While many agricultural use cases appear feasible with current compute resources and machine learning algorithms, the lack of software infrastructure for collecting,... L. Waltz, S. Khanal, S. Katari, C. Hong, A. Anup, J. Colbert, A. Potlapally, T. Dill, C. Porter, J. Engle, C. Stewart, H. Subramoni, R. Machiraju, O. Ortez, L. Lindsey, A. Nandi |