Login

Proceedings

Find matching any: Reset
Laacouri, A
Add filter to result:
Authors
Mulla, D
Laacouri, A
Kaiser, D
Laacouri, A
Nigon, T
Mulla, D
Yang, C
Wilson, G.L
Mulla, D.J
Galzki, J
Laacouri, A
Vetsch, J
Topics
Remote Sensing Applications in Precision Agriculture
Big Data, Data Mining and Deep Learning
In-Season Nitrogen Management
Type
Oral
Year
2016
2018
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Comparison Between High Resolution Spectral Indices and SPAD Meter Estimates of Nitrogen Deficiency in Corn

Low altitude remote sensing provides an ideal platform for monitoring time sensitive nitrogen status in crops. Research is needed however to understand the interaction between crop growth stage, spatial resolution and spectral indices derived from low altitude remote sensing. A TetraCam camera equipped with six bands including the red edge and near infrared (NIR) was used to investigate corn nitrogen dynamics. Remote sensing data were collected during the 2013 and 2014 growing seasons at four... D. Mulla, A. Laacouri, D. Kaiser

2. A Case Study Comparing Machine Learning and Vegetation Indices for Assessing Corn Nitrogen Status in an Agricultural Field in Minnesota

Compact hyperspectral sensors compatible with UAV platforms are becoming more readily available. These sensors provide reflectance in narrow spectral bands while covering a wide range of the electromagnetic spectrum. However, because of the narrow spectral bands and wide spectral range, hyperspectral data analysis can benefit greatly from data mining and machine learning techniques to leverage its power. In this study, rainfed corn was grown during the 2017 growing season using four nitrogen treatments... A. Laacouri, T. Nigon, D. Mulla, C. Yang

3. Predicted Nitrate-N Loads for Fall, Spring, and VRN Fertilizer Application in Southern Minnesota

Nitrate-N from agricultural fields is a source of pollution to fresh and marine waters via subsurface tile drainage.  Sensor-based technologies that allow for in-season monitoring of crop nitrogen requirements may represent a way to reduce nitrate-N loadings to surface waters by allowing for fertilizer application on a more precise spatial and temporal resolution.  However, little research has been done to determine its effectiveness in reducing nitrate-N losses.  In this study,... G.L. Wilson, D.J. Mulla, J. Galzki, A. Laacouri, J. Vetsch